Skip to main content

Mammogram Classification Schemes by Using Convolutional Neural Networks

  • Conference paper
  • First Online:
Book cover Technology Trends (CITT 2017)

Abstract

This work presents the comparison of two schemes of mammogram classification based on convolutional neural networks (CNN). The main difference between these two classification schemes relies on the number of bits per image pixel, the feature extraction techniques and the number of neurons in the fully connected layer. We use 1070 mammograms from the Digital Database for Screening Mammography (DDSM), which are divided into two categories: benign and malignant mammograms. We use CNN for classification by applying the open source library TensorFlow which is configured on the high level library Keras. In order to tune our classification model parameters, we apply random and grid search algorithms, by combining the batch size, the number of layers, the learning rate and three optimizers: Adadelta, RMSProp and SGD. We evaluate the classification algorithm performances through the accuracy and two loss functions: Categorical Cross-Entropy and Mean Squared Error. The model with the best accuracy has 85.00%, and a mean squared error of 15.00%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Godoy, Y., Godoy, C., Reyes, J.: Social representations of gynecologic cancer screening assessment a qualitative research on ecuadorian women. Revista da Escola de Enfermagem da USP 50(SPE), 68–73 (2016)

    Article  Google Scholar 

  2. López-Cortés, A., Echeverría, C., Oña-Cisneros, F., Sánchez, M.E., Herrera, C., Cabrera-Andrade, A., Rosales, F., Ortiz, M., Paz-y Miño, C.: Breast cancer risk associated with gene expression and genotype polymorphisms of the folate-metabolizing mthfr gene: a case-control study in a high altitude ecuadorian mestizo population. Tumor Biol. 36(8), 6451–6461 (2015)

    Article  Google Scholar 

  3. Sprague, B.L., Arao, R.F., Miglioretti, D.L., Henderson, L.M., Buist, D.S., Onega, T., Rauscher, G.H., Lee, J.M., Tosteson, A.N., Kerlikowske, K., et al.: National performance benchmarks for modern diagnostic digital mammography: update from the breast cancer surveillance consortium. Radiology 283(1), 59–69 (2017)

    Article  Google Scholar 

  4. Jiang, J., Trundle, P., Ren, J.: Medical image analysis with artificial neural networks. Comput. Med. Imaging Graph. 34(8), 617–631 (2010)

    Article  Google Scholar 

  5. Kamalakannan, J., Thirumal, T., Vaidhyanathan, A., MukeshBhai, K.D.: Study on different classification technique for mammogram image. In: 2015 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–5. IEEE (2015)

    Google Scholar 

  6. Don, S., Chung, D., Revathy, K., Choi, E., Min, D.: A new approach for mammogram image classification using fractal properties. Cybern. Inf. Technol. 12(2), 69–83 (2012)

    MathSciNet  Google Scholar 

  7. Jankulovski, B., Kitanovski, I., Trojacanec, K., Dimitrovski, I.: Mammography image classification using texture features (2012)

    Google Scholar 

  8. Xie, W., Li, Y., Ma, Y.: Breast mass classification in digital mammography based on extreme learning machine. Neurocomputing 173, 930–941 (2016)

    Article  Google Scholar 

  9. Taghanaki, S.A., Kawahara, J., Miles, B., Hamarneh, G.: Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification. Comput. Methods Programs Biomed. 145, 85–93 (2017)

    Article  Google Scholar 

  10. Khan, M.M., Mendes, A., Zhang, P., Chalup, S.K.: Evolving multi-dimensional wavelet neural networks for classification using cartesian genetic programming. Neurocomputing 247, 39–58 (2017)

    Article  Google Scholar 

  11. Magna, G., Casti, P., Jayaraman, S.V., Salmeri, M., Mencattini, A., Martinelli, E., Di Natale, C.: Identification of mammography anomalies for breast cancer detection by an ensemble of classification models based on artificial immune system. Knowl.-Based Syst. 101, 60–70 (2016)

    Article  Google Scholar 

  12. Pratiwi, M., Harefa, J., Nanda, S., et al.: Mammograms classification using gray-level co-occurrence matrix and radial basis function neural network. Procedia Comput. Sci. 59, 83–91 (2015)

    Article  Google Scholar 

  13. Buciu, I., Gacsadi, A.: Gabor wavelet based features for medical image analysis and classification. In: 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies, 2009. ISABEL 2009, pp. 1–4. IEEE (2009)

    Google Scholar 

  14. Khan, S., Hussain, M., Aboalsamh, H., Mathkour, H., Bebis, G., Zakariah, M.: Optimized gabor features for mass classification in mammography. Appl. Soft Comput. 44, 267–280 (2016)

    Article  Google Scholar 

  15. Srinivasan, M., Venkata, H.P.: Towards better veracity for breast cancer detection using gabor analysis and statistical learning. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 1864–1869. IEEE (2014)

    Google Scholar 

  16. Lucht, R.E., Knopp, M.V., Brix, G.: Classification of signal-time curves from dynamic MR mammography by neural networks. Magn. Reson. Imaging 19(1), 51–57 (2001)

    Article  Google Scholar 

  17. Setiawan, A.S., Wesley, J., Purnama, Y., et al.: Mammogram classification using law’s texture energy measure and neural networks. Procedia Comput. Sci. 59, 92–97 (2015)

    Article  Google Scholar 

  18. Blas, M.J., Sarli, J.L., Díaz Ferreyra, N.E.: Redes Neuronales Artificiales Aplicadas al Reconocimiento de Caracteres Morse (2013). https://doi.org/10.13140/2.1.2233.4247

  19. Wahab, N., Khan, A., Lee, Y.S.: Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection. Comput. Biol. Med. 85, 86–97 (2017)

    Article  Google Scholar 

  20. Qayyum, A., Anwar, S.M., Awais, M., Majid, M.: Medical image retrieval using deep convolutional neural network. Neurocomputing 266, 8–20 (2017). https://doi.org/10.1016/j.neucom.2017.05.025. ISSN 0925-2312

    Article  Google Scholar 

  21. Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Lopez, M.A.G.: Representation learning for mammography mass lesion classification with convolutional neural networks. Comput. Methods Programs Biomed. 127, 248–257 (2016)

    Article  Google Scholar 

  22. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  23. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  24. Hinton, G., Nitish S., Kevin S.: Neural networks for machine learning lecture 6a overview of mini-batch gradient descent (2012)

    Google Scholar 

  25. Raschka, S.: Stochastic downward gradient (2017)

    Google Scholar 

  26. Leal, Y., Gonzalez-Abril, L., Ruiz, M., Lorencio, C., Bondia, J., Vehi, J.: Un nuevo enfoque para detectar mediciones de glucosa erróneas en los sistemas de monitorización continuos de glucosa. In: JARCA 2012, vol. 15, p. 17 (2012)

    Google Scholar 

  27. Liu, H., Meng, J., Wang, H., Qiu, S.: Application of cross entropy algorithm in combination forecasting model. In: 2016 2nd IEEE International Conference on Computer and Communications (ICCC), pp. 1289–1293. IEEE (2016)

    Google Scholar 

  28. Jensen, J.R., Christensen, M.G., Jakobsson, A.: Harmonic minimum mean squared error filters for multichannel speech enhancement. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 501–505. IEEE (2017)

    Google Scholar 

  29. Heath, M., Bowyer, K., Kopans, D., Kegelmeyer Jr., P., Moore, R., Chang, K., Munishkumaran, S.: Current status of the digital database for screening mammography. In: Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, L. (eds.) Digital Mammography, vol. 13, pp. 457–460. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5318-8_75

    Chapter  Google Scholar 

  30. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W.P.: The digital database for screening mammography. In: Proceedings of the 5th International Workshop on Digital Mammography, pp. 212–218. Medical Physics Publishing (2000)

    Google Scholar 

  31. Rose, C.: Digital database for digital mammography software (2016)

    Google Scholar 

  32. Lee, H., Lee, B.T.: Selective inference for accelerating deep learning-based image classification. In: 2016 International Conference on Information and Communication Technology Convergence (ICTC), pp. 135–137. IEEE (2016)

    Google Scholar 

  33. Lu, Y., Chen, L., Saidi, A., Dellandrea, E., Wang, Y.: Discriminative transfer learning using similarities and dissimilarities. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–14 (2017). https://doi.org/10.1109/TNNLS.2017.2705760

    Article  Google Scholar 

  34. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)

    Google Scholar 

  35. Pontes, F.J., Amorim, G., Balestrassi, P.P., Paiva, A., Ferreira, J.R.: Design of experiments and focused grid search for neural network parameter optimization. Neurocomputing 186, 22–34 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Tusa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soriano, D., Aguilar, C., Ramirez-Morales, I., Tusa, E., Rivas, W., Pinta, M. (2018). Mammogram Classification Schemes by Using Convolutional Neural Networks. In: Botto-Tobar, M., Esparza-Cruz, N., León-Acurio, J., Crespo-Torres, N., Beltrán-Mora, M. (eds) Technology Trends. CITT 2017. Communications in Computer and Information Science, vol 798. Springer, Cham. https://doi.org/10.1007/978-3-319-72727-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72727-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72726-4

  • Online ISBN: 978-3-319-72727-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics