Skip to main content

The Scaling of the Molecular Dynamics of Liquid Crystals as Revealed by Broadband Dielectric, Specific Heat, and Neutron Spectroscopy

  • Chapter
  • First Online:
The Scaling of Relaxation Processes

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

A combination of different complementary methods is employed to investigate scaling of the molecular dynamics of two different liquid crystals . Each method is sensitive to different kind of fluctuations and provides therefore a different window to look at the molecular dynamics. In detail, broadband dielectric spectroscopy is combined with specific heat spectroscopy and neutron scattering . As systems, the nematic liquid crystal E7 and a discotic liquid crystalline pyrene are considered. First of all, it was proven that both systems show all peculiarities which are characteristic for glassy dynamics and the glassy state . Especially for the nematic liquid crystal E7, it could be unambiguously shown by a combination of dielectric and specific heat spectroscopy that the tumbling mode is the underlying motional process responsible for glassy dynamics. Dielectric investigations on the discotic liquid crystalline pyrene reveal that at the phase transition from the plastic crystalline to the hexagonal columnar liquid crystalline phase , the molecular dynamics changes from a more strong to fragile temperature dependence of the relaxation rates. Moreover, a combination of results obtained by specific heat spectroscopy with data from structural methods allows an estimation of the length scale relevant for the glass transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BP:

Boson Peak

\( {\text{c}}_{\text{p}}^{*} = {\text{c}}_{\text{p}}^{{\prime }} - {\text{i c}}_{\text{p}}^{{\prime \prime }} \) :

Complex heat capacity, \( {\text{c}}_{\text{p}}^{{\prime }} \)—real part, \( {\text{c}}_{\text{p}}^{{\prime \prime }} \)—loss part

D:

Fragility parameter

δT:

Width of the glass transition

EA:

Activation energy

\( \upvarepsilon* =\upvarepsilon^{{\prime }} - {\text{i}}\upvarepsilon^{{\prime \prime }} \) :

Complex dielectric function, \( \upvarepsilon^{{\prime }} \)—real part, \( \upvarepsilon^{{\prime \prime }} \)—loss part

f:

Frequency

fp:

Relaxation rate

f:

Relaxation rate at infinite temperatures

HN:

Havriliak–Negami function

kB:

Boltzmann constant

q:

Scattering vector

S(q,ω):

Dynamic structure factor

S(q,t):

Incoherent intermediate scattering function

Tg:

Glass transition temperature

T0:

Vogel or ideal glass transition temperature

τ:

Relaxation time

VDOS, g(ω):

Vibrational density of states

VFT:

Vogel–Fulcher–Tammann

ξ:

Correlation length for the glass transition

ω:

Angular frequency (ω = 2πf)

References

  1. Anderson PW (1995) Science 267:1615

    Google Scholar 

  2. Angel CA (1995) Science 267:1924

    Google Scholar 

  3. Debenedetti PG, Stillinger FH (2000) Nature 410:259

    Google Scholar 

  4. Dyre JC (2006) Rev Mod Phys 78:953

    Google Scholar 

  5. Kivelson S, Tarjus G (2008) Nat Mater 7:831

    Google Scholar 

  6. Ediger M, Harrowell P (2012) J Chem Phys 137:080901

    Google Scholar 

  7. Vogel H (1921) Physikalische Zeitschrift 22:645

    Google Scholar 

  8. Fulcher GS (1925) J Am Ceram Soc 8:339

    Google Scholar 

  9. Tammann G, Hesse WZ (1926) Anorg Allg Chem 156:245

    Google Scholar 

  10. Adam G, Gibbs JH (1965) J Chem Phys 43:139

    Google Scholar 

  11. Donth EJ (1992) Relaxation and thermodynamics in polymers: glass transition. Akademie Verlag, Berlin

    Google Scholar 

  12. Berthier L, Biroli G, Bouchaud J-P, Cipelletti L, El Masri D, Ladieu F, Pierno M (2005) Science 310:1797

    Google Scholar 

  13. Bauer Th, Lunkenheimer P, Loidl A (2013) Phys Rev Lett 111:225702

    Google Scholar 

  14. Johari GP, Goldstein MJ (1970) Chem Phys 53:2372

    Google Scholar 

  15. Johari GP (1976) Goldstein M, Simha R, The glass transition and the nature of the glassy state. Ann NY Acad Sci 279:117

    Google Scholar 

  16. Zallen R (1983) The physics of amorphous solids. Wiley, New York

    Google Scholar 

  17. Malinovsky VK, Novikov VN, Sokolov AP (1987) J Non-Cryst Solids 90:485

    Google Scholar 

  18. Buchenau U, Galperin YM, Gurevich VL, Parshin DA, Ramos MA, Schober HR (1992) Phys Rev B: Condens Matter Mater Phys 46:2798

    Google Scholar 

  19. Laird BB, Schober HR (1991) Phys Rev Lett 66:636

    Google Scholar 

  20. Taraskin SN, Loh YL, Natarajan G, Elliott SR (2001) Phys Rev Lett 86:1255

    Google Scholar 

  21. Schirmacher W, Diezemann G, Ganter C (1998) Phys Rev Lett 81:136

    Google Scholar 

  22. Milkus R, Zaccone A (2016) Phys Rev B 93:094204

    Google Scholar 

  23. Angell CA (1991) J Non-Cryst Solids 131–133:13

    Google Scholar 

  24. Angell CA (1997) J Res Natl Inst Stand Technol 102:171

    Google Scholar 

  25. Suga H, Seki S (1974) J Non-Cryst Solids 16:171

    Google Scholar 

  26. Wang LM, Richert R (2004) J Chem Phys 121:11170

    Google Scholar 

  27. Leslie-Pelecky DL, Birge NO (1994) Universal scaling of the relaxation near a model glass. Phys Rev Lett 72:1232

    Google Scholar 

  28. Kuchta B, Descamps M, Affouard F (1998) J Chem Phys 109:6753–6763

    Google Scholar 

  29. Benkhof S, Blochowicz T, Kudlik A, Tschirwitz C, Rössler E (2000) Ferroelectrics 236:193–207

    Google Scholar 

  30. Brand R, Lunkenheimer P, Loidl A (2002) J Chem Phys 116:10386–10401

    Google Scholar 

  31. Krause C, Yin H, Cerclier C, Morineau D, Wurm A, Schick C, Emmerling F, Schönhals A (2012) Soft Matter 8:11115

    Google Scholar 

  32. Groothues H, Kremer F, Schouten PG, Warman JM (1995) Adv Mater 7:283

    Google Scholar 

  33. Glüsen B, Kettner A, Kopitzke J, Wendorff JH (1998) J Non-Cryst Solids 241:113

    Google Scholar 

  34. de Gennes PG (1975) The physics of liquid crystals. Clarendon press, Oxford

    Google Scholar 

  35. Chandrasekhar S (1992) Liquid crystals. Cambridge University Press, Cambridge

    Google Scholar 

  36. Demus D, Goodby J, Gray GW, Spiess HW, Vill V (eds) (1998) Handbook of liquid crystals. Wiley-VCH, Weinheim

    Google Scholar 

  37. Laschat S, Baro A, Steinke N, Giesselmann F, Hägele G, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni T (2007) Angew Chem 119:4916

    Google Scholar 

  38. Kremer F, Schönhals A (2003) Molecular and collective dynamics of (polymeric) liquid crystals In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  39. Moscicki K (1992) Dielectric relaxation of macromolecular liquid crystals. In: Collyer AA (ed) Liquid crystal polymers—from structure to applications. Elsevier, Amsterdam

    Google Scholar 

  40. Williams G (1989) In: Allen G, Bevington JC (eds) Comprehensive polymer science, vol 2. Pergamon, Oxford

    Google Scholar 

  41. Nordio PL, Rigatti G, Serge U (1973) Mol Phys 25:129

    Google Scholar 

  42. Williams G (1994) In: Luckhurst GR, Veracini CA (eds) The molecular dynamics of liquid crystals. Kluwer Academic Press, p 431

    Google Scholar 

  43. Tarroni R, Zannoni C (1991) J Chem Phys 95:4550

    Google Scholar 

  44. Schönhals A, Kremer F (2003) Theory of dielectric relaxation. In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  45. Martin AJ, Meier G, Saupe A (1971) Chem Soc Faraday Symp 5:119

    Google Scholar 

  46. Kreul HG, Würflinger A (1992) Phys Rev A 45:8624

    Google Scholar 

  47. Urban S, Brückert T, Würflinger A (1994) Z Naturforsch 49a:552

    Google Scholar 

  48. Urban S, Gestblom B, Kresse H, Dabrowski A (1996) Z Naturforsch 51a:834

    Google Scholar 

  49. Rozanski SA, Stannarius R, Gorbatschow W, Kremer F (1996) Liq Cryst 20:59

    Google Scholar 

  50. Schönhals H, Zubowa H-L, Fricke R, Frunza S, Frunza L, Moldovan R (1999) Cryst Res Technol 34(1309):1999

    Google Scholar 

  51. Gottke SD, Cang H, Bagchi B, Fayer MD (2002) J Chem Phys 116:6339

    Google Scholar 

  52. Cang H, Novikov VN, Fayer MD (2003) Phys Rev Lett 90:197401

    Google Scholar 

  53. Zeller HR (1982) Phys Rev Lett 48:334

    Google Scholar 

  54. Benguigui L (1983) Phys Rev A28:1852

    Google Scholar 

  55. Benguigui L (1984) Phys Rev A29:2968

    Google Scholar 

  56. Diogo AC, Martins AF (1982) J Phys (Paris) 43:779

    Google Scholar 

  57. Zhong ZZ, Schuele DE, Gordon WL, Adamic KJ, Akins RB (1992) J Polym Sci B: Polym Phys 30:1443

    Google Scholar 

  58. Maschke U, Benmouna M, Coqueret X (2002) Macromol Rapid Commun 23:159

    Google Scholar 

  59. Roussel F, Buisine JM, Maschke U, Coqueret X (1997) Mol Cryst Liq Cryst 299:321

    Google Scholar 

  60. Viciosa MT, Nunes AM, Fernandes A, Almeida PL, Godinho MH, Dionisio MD (2002) Liq Cryst 29:429

    Google Scholar 

  61. Van Boxtel MCW, Wübbenhorst M, Van Turnhout J, Bastiaansen CWM, Broer DJ (2003) Liq Cryst 30:235

    Google Scholar 

  62. Van Boxtel MCW, Wübbenhorst M, Van Turnhout J, Bastiaansen CWM, Broer DJ (2004) Liq Cryst 31:1207

    Google Scholar 

  63. Bras AR, Viciosa MT, Rodrigues C, Dias CJ, Dionisio MD (2006) Phys Rev E 73:061709

    Google Scholar 

  64. Dionísio M, Brás AR, Henriques S, Casimiro T, Ricardo AA, Sotomayor J, Caldeira J, Santos C (2005) Electronic liquid crystals, Mar/21

    Google Scholar 

  65. Hassheider T, Benning SA, Kitzerow HS, Achard MF, Bock H (2001) Angew Chem Int Ed 40:2060

    Google Scholar 

  66. Krause C, Yin H, Cerclier C, Morineau D, Wurm A, Schick C, Emmerling F, Schönhals A (2012) Soft Matter 8:11115

    Google Scholar 

  67. Kremer F, Schönhals A (2003) Broadband dielectric measurement techniques. In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  68. Brás AR, Dionísio M, Huth H, Schick C, Schönhals A (2007) Phys Rev E 75:061708

    Google Scholar 

  69. Havriliak S, Negami S (1967) Polymer 8:161; Havriliak S, Negami S (1966) J Polym Sci Part C: Polym Symp 14:99

    Google Scholar 

  70. Schawe JEK (1995) Thermochim Acta 260:1–16

    Google Scholar 

  71. Schick C (2002) In: Cheng SZD, Handbook of thermal analysis and calorimetry, vol 3. Elsevier, Amsterdam

    Google Scholar 

  72. Huth H, Minakov AA, Schick C (2006) J Polym Sci, Part B: Polym Phys 44:2996

    Google Scholar 

  73. http://www.xensor.nl/index.php/products/calorimeter-chips

  74. Bée M (1988) Quasielastic neutron scattering. Principles and applications in solid state chemistry, biology and materials science. Adam Hilger, London

    Google Scholar 

  75. http://www.ill.eu/instruments-support/computing-forscience/cs-software/all-software/tofhr/inx/

  76. Lovesey SW (1987) Theory of neutron scattering from condensed matter, vol 1. Oxford University, New York

    Google Scholar 

  77. Zorn R, Hartmann L, Frick B, Richter D, Kremer F (2002) J Non-Cryst Solids 307:547

    Google Scholar 

  78. Zorn R, Mayorova M, Richter D, Schönhals A, Hartmann L, Kremer F, Frick B (2008) AIP Conf Proc 982:79–84

    Google Scholar 

  79. Schick C, Sukhorukov D, Schönhals A (2001) Macromol Chem Phys 202:1398

    Google Scholar 

  80. Schönhals A, Wolff D, Springer J (1998) Macromolecules 31:9019

    Google Scholar 

  81. Schönhals A (2003) Molecular dynamics in polymer model systems. In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  82. Sillescu H (1999) J Non-Cryst Solids 243:8

    Article  Google Scholar 

  83. Ediger MD Ann Rev Phys Chem 51:99

    Google Scholar 

  84. Colmenero J, Moreno AJ, Alegria A (2005) Prog Polym Sci 30:1147

    Google Scholar 

  85. Krause C, Zorn R, Emmerling F, Falkenhagen J, Frick B, Huber P, Schönhals A (2014) Phys Chem Chem Phys 16:3724

    Google Scholar 

  86. Ndao M, Lefort R, Cerclier CV, Busselez R, Morineau D, Frick B, Ollivier J, Kityk AV, Huber P (2014) RCS Adv 4:59358

    Google Scholar 

  87. Elmahdy MM, Dou X, Mondeshki M, Floudas G, Butt HJ, Spiess HW, Müllen K (2008) J Am Chem Soc 130:5311

    Google Scholar 

  88. van den Berg O, Sengers WGF, Jager WF, Picken SJ, Wübbenhorst M (2004) Macromolecules 37:2460

    Google Scholar 

Download references

Acknowledgements

The authors thank for fruitful collaborations with Prof. Dr. C. Schick and Dr. H. Huth (University Rostock). Further, Prof. Dr. M. Dionisio (Universidade Nova de Lisboa) and Dr. A. R. Bras (University Cologne) are thanked for cooperation. Dr. C. Krause is thankfully acknowledged for her work in the field of discotic liquid crystals. The Institut Laue–Langevin (Grenoble, France) is thanked for enabling the neutron scattering experiments. The financial support from the German Science Foundation (Deutsche Forschungsgemeinschaft, SCHO-470/21-1) is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schönhals .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schönhals, A., Frick, B., Zorn, R. (2018). The Scaling of the Molecular Dynamics of Liquid Crystals as Revealed by Broadband Dielectric, Specific Heat, and Neutron Spectroscopy. In: Kremer, F., Loidl, A. (eds) The Scaling of Relaxation Processes. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-72706-6_9

Download citation

Publish with us

Policies and ethics