Skip to main content

Linear Viscoelasticity of Polymers and Polymer Nanocomposites: Molecular-Dynamics Large Amplitude Oscillatory Shear and Probe Rheology Simulations

  • Chapter
  • First Online:

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

In this chapter, we discuss coarse-grained and atomistic molecular-dynamics simulation studies of the rheological properties of bulk polymer systems and polymer nanocomposites. Both systems contain monodispersed and non-crosslinked chain molecules. A multiscale strategy is applied to characterize the rheological behavior on different length scales of the systems structural organization. Fully atomistic simulations provide insights in rheological properties on smaller length scales than those accessible through coarse-grained simulations. Different approaches are utilized to obtain rheological moduli at these different length scales. At both levels of description, cyclic shear deformation is performed to characterize macroscopic properties of the systems before and after filler insertion. In the fully atomistic simulations of polyimide R-BAPB, passive microrheology approach is employed in addition to active rheology. To this end, a probe particle is immersed into the atomistic polymer matrix. Then, local rheological properties on the length scales at and beyond the Kuhn length are estimated. Results are compared with macroscopic rheological properties obtained by shear deformation. Additionally, the influence of the strain amplitude on the resulting rheological properties is examined. The reported coarse-grained simulations show a strong decrease of the nanocomposites storage modulus with increasing strain amplitude, which is accompanied by a maximum in the loss modulus (the so-called Payne effect); the onset of the softening is observed in the linear regime of deformation at strain amplitude of about 0.01. Moreover, the dependence of the storage modulus on the instantaneous strain exhibits both softening and hardening regimes, in agreement with recently reported [22] Large Amplitude Oscillatory Shear (LAOS) experiments. The simulations suggest that the observed hardening is caused by the shear-induced decrease of the non-affine diffusion of the polymer segments due to filler particles acting as effective crosslinks between polymeric chains and, hence, hindering diffusion. Moreover, the formation of “glassy” immobile layers at the nanoparticle interface strongly increases the storage modulus at low strain amplitudes. The strain softening with increasing strain amplitude is connected to the mobilization of these glassy layers and an increase in the dynamic heterogeneity of the polymer matrix. A breakup of the network structure plays a role as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35. https://doi.org/10.1002/adma.19960080104

    Article  CAS  Google Scholar 

  2. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  3. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Rep 53:73–197. https://doi.org/10.1016/j.mser.2006.06.001

    Article  CAS  Google Scholar 

  4. Zhu A-J, Sternstein S (2003) Nonlinear viscoelasticity of nanofilled polymers: interfaces, chain statistics and properties recovery kinetics. Compos Sci Technol 63:1113–1126. https://doi.org/10.1016/S0266-3538(03)00032-0

    Article  CAS  Google Scholar 

  5. Varol HS, Sánchez MA, Lu H, Baio JE, Malm C, Encinas N, Mermet-Guyennet MRB, Martzel N, Bonn D, Bonn M, Weidner T, Backus EHG, Parekh SH (2015) Multiscale effects of interfacial polymer confinement in silica nanocomposites. Macromolecules 48:7929–7937. https://doi.org/10.1021/acs.macromol.5b01111

    Article  CAS  Google Scholar 

  6. Allegra G, Raos G, Vacatello M (2008) Theories and simulations of polymer-based nanocomposites: from chain statistics to reinforcement. Prog Polym Sci 33:683–731. https://doi.org/10.1016/j.progpolymsci.2008.02.003

    Article  CAS  Google Scholar 

  7. Moll JF, Akcora P, Rungta A, Gong S, Colby RH, Benicewicz BC, Kumar SK (2011) Mechanical reinforcement in polymer melts filled with polymer grafted nanoparticles. Macromolecules 44:7473–7477. https://doi.org/10.1021/ma201200m

    Article  CAS  Google Scholar 

  8. Long D, Sotta P (2007) Stress relaxation of large amplitudes and long timescales in soft thermoplastic and filled elastomers. Rheol Acta 46:1029–1044. https://doi.org/10.1007/s00397-007-0187-6

    Article  CAS  Google Scholar 

  9. Payne AR (1965) Effect of dispersion on the dynamic properties of filler-loaded rubbers. J Appl Polym Sci 9:2273–2284. https://doi.org/10.1002/app.1965.070090619

    Article  CAS  Google Scholar 

  10. Kumar SK, Jouault N, Benicewicz B, Neely T (2013) Nanocomposites with polymer grafted nanoparticles. Macromolecules 46:3199–3214. https://doi.org/10.1021/ma4001385

    Article  CAS  Google Scholar 

  11. Hagita K, Morita H, Doi M, Takano H (2016) Coarse-grained molecular dynamics simulation of filled polymer nanocomposites under uniaxial elongation. Macromolecules 49:1972–1983. https://doi.org/10.1021/acs.macromol.5b02799

    Article  CAS  Google Scholar 

  12. Chen Y, Li Z, Wen S, Yang Q, Zhang L, Zhong C, Liu L (2014) Molecular simulation study of role of polymer–particle interactions in the strain-dependent viscoelasticity of elastomers (Payne effect). J Chem Phys 141:104901. https://doi.org/10.1063/1.4894502

    Article  PubMed  CAS  Google Scholar 

  13. Wang L, Zheng Z, Davris T, Li F, Liu J, Wu Y, Zhang L, Lyulin AV (2016) Influence of morphology on the mechanical properties of polymer nanocomposites filled with uniform or patchy nanoparticles. Langmuir 32:8473–8483. https://doi.org/10.1021/acs.langmuir.6b01049

    Article  PubMed  CAS  Google Scholar 

  14. Liu J, Zhang L, Cao D, Wang W (2009) Static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation. Phys Chem Chem Phys 11:11365–11384. https://doi.org/10.1039/b913511a

    Article  PubMed  CAS  Google Scholar 

  15. Liu J, Gao Y, Cao D, Zhang L, Guo Z (2011) Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation. Langmuir 27:7926–7933. https://doi.org/10.1021/la201073m

    Article  PubMed  CAS  Google Scholar 

  16. Wang W, Hou G, Zheng Z, Wang L, Liu J, Wu Y, Zhang L, Lyulin AV (2017) Designing polymer nanocomposites with a semi-interpenetrating or interpenetrating network structure: toward enhanced mechanical properties. Phys Chem Chem Phys 19:15808–15820. https://doi.org/10.1039/C7CP01453H

    Article  PubMed  CAS  Google Scholar 

  17. Wang W, Zhang Z, Davris T, Liu J, Gao Y, Zhang L, Lyulin AV (2017) Simulational insights into the mechanical response of prestretched double network filled elastomers. Soft Matter 13:8597–8608. https://doi.org/10.1039/C7SM01794D

    Article  PubMed  CAS  Google Scholar 

  18. Liu J, Wang Z, Zhang Z, Shen J, Chen Y, Zheng Z, Zhang L, Lyulin AV (2017) Self-assembly of block copolymer chains to promote the dispersion of nanoparticles in polymer nanocomposites. J Phys Chem B 121:9311–9318. https://doi.org/10.1021/acs.jpcb.7b08670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kutvonen A, Rossi G, Ala-Nissila T (2012) Correlations between mechanical, structural, and dynamical properties of polymer nanocomposites. Phys Rev E 85:41803. https://doi.org/10.1103/PhysRevE.85.041803

    Article  CAS  Google Scholar 

  20. Kutvonen A, Rossi G, Puisto SR, Rostedt NKJ, Ala-Nissila T (2012) Influence of nanoparticle size, loading, and shape on the mechanical properties of polymer nanocomposites. J Chem Phys 137:214901. https://doi.org/10.1063/1.4767517

    Article  PubMed  CAS  Google Scholar 

  21. Litvinov VM, Orza RA, Klüppel M, van Duin M, Magusin PCMM (2011) Rubber–filler interactions and network structure in relation to stress–strain behavior of vulcanized, carbon black filled EPDM. Macromolecules 44:4887–4900. https://doi.org/10.1021/ma2007255

    Article  CAS  Google Scholar 

  22. Mermet-Guyennet MRB, Gianfelice de Castro J, Habibi M, Martzel N, Denn MM, Bonn D (2015) LAOS: the strain softening/strain hardening paradox. J Rheol 59:21–32. https://doi.org/10.1122/1.4902000

    Article  CAS  Google Scholar 

  23. Wyss HM, Miyazaki K, Mattsson J, Hu Z, Reichman DR, Weitz DA (2007) Strain-rate frequency superposition: a rheological probe of structural relaxation in soft materials. Phys Rev Lett 98:238303. https://doi.org/10.1103/PhysRevLett.98.238303

    Article  PubMed  CAS  Google Scholar 

  24. Wilson M, Baljon A (2017) Microstructural origins of nonlinear response in associating polymers under oscillatory shear. Polymers 9:556. https://doi.org/10.3390/polym9110556

    Article  CAS  PubMed Central  Google Scholar 

  25. Wilson M, Rabinovitch A, Baljon ARC (2015) Computational study of the structure and rheological properties of self-associating polymer networks. Macromolecules 48:6313–6320. https://doi.org/10.1021/acs.macromol.5b00885

    Article  CAS  Google Scholar 

  26. Mark JE (2007) Physical properties of polymers handbook. Springer Science & Business Media

    Google Scholar 

  27. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/JCPH.1995.1039

    Article  CAS  Google Scholar 

  28. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447. https://doi.org/10.1021/ct700301q

    Article  PubMed  CAS  Google Scholar 

  29. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  Google Scholar 

  30. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676. https://doi.org/10.1002/jcc.20090

    Article  PubMed  CAS  Google Scholar 

  31. Oostenbrink C, Soares TA, Van Der Vegt NFA, Van Gunsteren WF (2005) Validation of the 53A6 GROMOS force field. Eur Biophys J 34:273–284. https://doi.org/10.1007/s00249-004-0448-6

    Article  PubMed  CAS  Google Scholar 

  32. Lyulin SV, Gurtovenko AA, Larin SV, Nazarychev VM, Lyulin AV (2013) Microsecond atomic-scale molecular dynamics simulations of polyimides. Macromolecules 46:6357–6363. https://doi.org/10.1021/ma4011632

    Article  CAS  Google Scholar 

  33. Lyulin SV, Larin SV, Gurtovenko AA, Nazarychev VM, Falkovich SG, Yudin VE, Svetlichnyi VM, Gofman IV, Lyulin AV (2014) Thermal properties of bulk polyimides: insights from computer modeling versus experiment. Soft Matter 10:1224–1232. https://doi.org/10.1039/c3sm52521j

    Article  PubMed  CAS  Google Scholar 

  34. Nazarychev VM, Larin SV, Lukasheva NV, Glova AD, Lyulin SV (2013) Evaluation of the characteristic equilibration times of bulk polyimides via full-atomic computer simulation. Polym Sci Ser A 55:570–576. https://doi.org/10.1134/S0965545X1308004X

    Article  CAS  Google Scholar 

  35. Lyulin SV, Larin SV, Gurtovenko AA, Lukasheva NV, Yudin VE, Svetlichnyi VM, Lyulin AV (2012) Effect of the SO2 group in the diamine fragment of polyimides on their structural, thermophysical, and mechanical properties. Polym Sci Ser A 54:631–643. https://doi.org/10.1134/S0965545X12070048

    Article  CAS  Google Scholar 

  36. Falkovich SG, Lyulin SV, Nazarychev VM, Larin SV, Gurtovenko AA, Lukasheva NV, Lyulin AV (2014) Influence of the electrostatic interactions on thermophysical properties of polyimides: molecular-dynamics simulations. J Polym Sci Part B: Polym Phys 52:640–646. https://doi.org/10.1002/polb.23460

    Article  CAS  Google Scholar 

  37. Falkovich SG, Larin SV, Lyulin AV, Yudin VE, Kenny JM, Lyulin SV (2014) Influence of the carbon nanofiller surface curvature on the initiation of crystallization in thermoplastic polymers. RSC Adv 4:48606–48612. https://doi.org/10.1039/C4RA07438F

    Article  CAS  Google Scholar 

  38. Larin SV, Falkovich SG, Nazarychev VM, Gurtovenko AA, Lyulin AV, Lyulin SV (2014) Molecular-dynamics simulation of polyimide matrix pre-crystallization near the surface of a single-walled carbon nanotube. RSC Adv 4:830–844. https://doi.org/10.1039/C3RA45010D

    Article  CAS  Google Scholar 

  39. Falkovich SG, Larin SV, Nazarychev VM, Volgin IV, Gurtovenko AA, Lyulin AV, Lyulin SV (2014) Computer simulation of the heat-resistant polyimides ULTEMTM and EXTEMTM with the use of GROMOS53a6 and AMBER99 force fields. Polym Sci Ser A 56:558–567. https://doi.org/10.1134/S0965545X14040063

    Article  CAS  Google Scholar 

  40. Larin SV, Glova AD, Serebryakov EB, Nazarychev VM, Kenny JM, Lyulin SV (2015) Influence of the carbon nanotube surface modification on the microstructure of thermoplastic binders. RSC Adv 5:51621–51630. https://doi.org/10.1039/C5RA07851B

    Article  CAS  Google Scholar 

  41. Nazarychev VM, Larin SV, Yakimansky AV, Lukasheva NV, Gurtovenko AA, Gofman IV, Yudin VE, Svetlichnyi VM, Kenny JM, Lyulin SV (2015) Parameterization of electrostatic interactions for molecular dynamics simulations of heterocyclic polymers. J Polym Sci Part B: Polym Phys 53:912–923. https://doi.org/10.1002/polb.23715

    Article  CAS  Google Scholar 

  42. Nazarychev VM, Lyulin AV, Larin SV, Gofman IV, Kenny JM, Lyulin SV (2016) Correlation between the high-temperature local mobility of heterocyclic polyimides and their mechanical properties. Macromolecules 49:6700–6710. https://doi.org/10.1021/acs.macromol.6b00602

    Article  CAS  Google Scholar 

  43. Falkovich SG, Nazarychev VM, Larin SV, Kenny JM, Lyulin SV (2016) Mechanical properties of a polymer at the interface structurally ordered by graphene. J Phys Chem C 120:6771–6777. https://doi.org/10.1021/acs.jpcc.5b11028

    Article  CAS  Google Scholar 

  44. Borzdun NI, Larin SV, Falkovich SG, Nazarychev VM, Volgin IV, Yakimansky AV, Lyulin AV, Negi V, Bobbert PA, Lyulin SV (2016) Molecular dynamics simulation of poly (3-hexylthiophene) helical structure in vacuo and in amorphous polymer surrounding. J Polym Sci Part B: Polym Phys 54:2448–2456. https://doi.org/10.1002/polb.24236

    Article  CAS  Google Scholar 

  45. Nazarychev VM, Lyulin AV, Larin SV, Gurtovenko AA, Kenny JM, Lyulin SV (2016) Molecular dynamics simulations of uniaxial deformation of thermoplastic polyimides. Soft Matter 12:3972–3981. https://doi.org/10.1039/C6SM00230G

    Article  PubMed  CAS  Google Scholar 

  46. Glova AD, Falkovich SG, Larin SV, Mezhenskaia DA, Lukasheva NV, Nazarychev VM, Tolmachev DA, Mercurieva AA, Kenny JM, Lyulin SV (2016) Poly(lactic acid)-based nanocomposites filled with cellulose nanocrystals with modified surface: all-atom molecular dynamics simulations. Polym Int 65:892–898. https://doi.org/10.1002/pi.5102

    Article  CAS  Google Scholar 

  47. Lyulin SV, Larin SV, Nazarychev VM, Fal’kovich SG, Kenny JM (2016) Multiscale computer simulation of polymer nanocomposites based on thermoplastics. Polym Sci Ser C 58:2–15. https://doi.org/10.1134/s1811238216010082

  48. Volgin IV, Larin SV, Abad E, Lyulin SV (2017) Molecular dynamics simulations of fullerene diffusion in polymer melts. Macromolecules 50:2207–2218. https://doi.org/10.1021/acs.macromol.6b02050

    Article  CAS  Google Scholar 

  49. Glova AD, Larin SV, Falkovich SG, Nazarychev VM, Tolmachev DA, Lukasheva NV, Lyulin SV (2017) Molecular dynamics simulations of oligoester brushes: the origin of unusual conformations. Soft Matter 13:6627–6638. https://doi.org/10.1039/C7SM01419H

    Article  PubMed  CAS  Google Scholar 

  50. Lukasheva NV, Tolmachev DA, Nazarychev VM, Kenny JM, Lyulin SV (2017) Influence of specific intermolecular interactions on the thermal and dielectric properties of bulk polymers: atomistic molecular dynamics simulations of Nylon 6. Soft Matter 13:474–485. https://doi.org/10.1039/c6sm02169g

  51. Nazarychev V, Larin S, Lyulin A, Dingemans T, Kenny J, Lyulin S (2017) Atomistic molecular dynamics simulations of the initial crystallization stage in an SWCNT-polyetherimide nanocomposite. Polymers 9:548. https://doi.org/10.3390/polym9100548

  52. Nazarychev VM, Dobrovskiy AY, Larin SV, Lyulin AV, Lyulin SV (2017) Simulating local mobility and mechanical properties of thermostable polyimides with different dianhydride fragments. J Polym Sci Part B: Polym Phys. https://doi.org/10.1002/polb.24550

    Article  Google Scholar 

  53. Davris T, Lyulin AV (2015) Coarse-grained molecular-dynamics simulations of capped crosslinked polymer films: equilibrium structure and glass-transition temperature. Polym Compos 36:1012–1019. https://doi.org/10.1002/pc.23413

    Article  CAS  Google Scholar 

  54. Davris T, Lyulin AV (2015) A coarse-grained molecular dynamics study of segmental structure and mobility in capped crosslinked copolymer films. J Chem Phys 143:74906. https://doi.org/10.1063/1.4928961

    Article  CAS  Google Scholar 

  55. Davris T, Mermet-Guyennet MRB, Bonn D, Lyulin AV (2016) Filler size effects on reinforcement in elastomer-based nanocomposites: experimental and simulational insights into physical mechanisms. Macromolecules 49:7077–7087. https://doi.org/10.1021/acs.macromol.6b00844

    Article  CAS  Google Scholar 

  56. Batistakis C, Lyulin AV, Michels MAJ (2012) Slowing down versus acceleration in the dynamics of confined polymer films. Macromolecules 45:7282–7292. https://doi.org/10.1021/ma300753e

    Article  CAS  Google Scholar 

  57. Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation. Rheol Acta 39:371–378. https://doi.org/10.1007/s003970000094

    Article  CAS  Google Scholar 

  58. Weihs D, Mason TG, Teitell MA (2006) Bio-microrheology: a frontier in microrheology. Biophys J 91:4296–4305. https://doi.org/10.1529/biophysj.106.081109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wirtz D (2009) Particle-tracking microrheology of living cells: principles and applications. Annu Rev Biophys 38:301–326. https://doi.org/10.1146/annurev.biophys.050708.133724

    Article  PubMed  CAS  Google Scholar 

  60. Sarmiento-Gomez E, Santamaría-Holek I, Castillo R (2014) Mean-square displacement of particles in slightly interconnected polymer networks. J Phys Chem B 118:1146–1158. https://doi.org/10.1021/jp4105344

    Article  PubMed  CAS  Google Scholar 

  61. Narita T, Indei T (2016) Microrheological study of physical gelation in living polymeric networks. Macromolecules 49:4634–4646. https://doi.org/10.1021/acs.macromol.6b00745

    Article  CAS  Google Scholar 

  62. Narita T, Mayumi K, Ducouret G, Hébraud P (2013) Viscoelastic properties of poly(vinyl alcohol) hydrogels having permanent and transient cross-links studied by microrheology, classical rheometry, and dynamic light scattering. Macromolecules 46:4174–4183. https://doi.org/10.1021/ma400600f

    Article  CAS  Google Scholar 

  63. Pommella A, Preziosi V, Caserta S, Cooper JM, Guido S, Tassieri M (2013) Using optical tweezers for the characterization of polyelectrolyte solutions with very low viscoelasticity. Langmuir 29:9224–9230. https://doi.org/10.1021/la4015948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Abdala AA, Amin S, van Zanten JH, Khan SA (2015) Tracer microrheology study of a hydrophobically modified comblike associative polymer. Langmuir 31:3944–3951. https://doi.org/10.1021/la504904n

    Article  PubMed  CAS  Google Scholar 

  65. Kuhnhold A, Paul W (2015) Active one-particle microrheology of an unentangled polymer melt studied by molecular dynamics simulation. Phys Rev E 91:42601. https://doi.org/10.1103/PhysRevE.91.042601

    Article  CAS  Google Scholar 

  66. Kuhnhold A, Paul W (2014) Passive one-particle microrheology of an unentangled polymer melt studied by molecular dynamics simulation. Phys Rev E 90:22602. https://doi.org/10.1103/PhysRevE.90.022602

    Article  CAS  Google Scholar 

  67. Kuhnhold A, Paul W (2014) Temperature dependent micro-rheology of a glass-forming polymer melt studied by molecular dynamics simulation. J Chem Phys 141:124907. https://doi.org/10.1063/1.4896151

    Article  PubMed  CAS  Google Scholar 

  68. Karim M, Indei T, Schieber JD, Khare R (2016) Determination of linear viscoelastic properties of an entangled polymer melt by probe rheology simulations. Phys Rev E 93:1–12. https://doi.org/10.1103/PhysRevE.93.012501

    Article  CAS  Google Scholar 

  69. Karim M, Kohale SC, Indei T, Schieber JD, Khare R (2012) Determination of viscoelastic properties by analysis of probe-particle motion in molecular simulations. Phys Rev E 86:51501. https://doi.org/10.1103/PhysRevE.86.051501

    Article  CAS  Google Scholar 

  70. Song Y, Dai LL (2010) Two-particle interfacial microrheology at polymer−polymer interfaces. Langmuir 26:13044–13047. https://doi.org/10.1021/la102171k

    Article  PubMed  CAS  Google Scholar 

  71. Song Y, Luo M, Dai LL (2010) Understanding nanoparticle diffusion and exploring interfacial nanorheology using molecular dynamics simulations. Langmuir 26:5–9. https://doi.org/10.1021/la901902t

    Article  PubMed  CAS  Google Scholar 

  72. Raos G, Moreno M, Elli S (2006) Computational experiments on filled rubber viscoelasticity: what is the role of particle−particle interactions? Macromolecules 39:6744–6751. https://doi.org/10.1021/ma061008h

    Article  CAS  Google Scholar 

  73. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753. https://doi.org/10.1016/j.progpolymsci.2011.02.002

    Article  CAS  Google Scholar 

  74. Rubinstein M, Colby RH (2003) Polymer physics. OUP Oxford, Oxford

    Google Scholar 

  75. Leutheusser E (1984) Dynamical model of the liquid-glass transition. Phys Rev A 29:2765–2773. https://doi.org/10.1103/PhysRevA.29.2765

    Article  CAS  Google Scholar 

  76. Hansen JP, Levesque D, Zinn-Justin J (1991) Liquids, freezing and the glass transition. North Holland, Amsterdam

    Google Scholar 

  77. Yamamoto U, Schweizer KS (2011) Theory of nanoparticle diffusion in unentangled and entangled polymer melts. J Chem Phys 135:224902. https://doi.org/10.1063/1.3664863

    Article  PubMed  CAS  Google Scholar 

  78. Yamamoto U, Schweizer KS (2015) Microscopic Theory of the long-time diffusivity and intermediate-time anomalous transport of a nanoparticle in polymer melts. Macromolecules 48:152–163. https://doi.org/10.1021/ma501150q

    Article  CAS  Google Scholar 

  79. Lee H-N, Paeng K, Swallen SF, Ediger MD (2009) Direct measurement of molecular mobility in actively deformed polymer glasses. Science 323:231–234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T. Davris and A. Lyulin acknowledge the FOM Foundation for the support of the presented research. It was also sponsored by the Stichting Nationale Computerfaciliteiten (National Computer Facilities Foundation, NCF) through the usage of its supercomputer facilities, with financial support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organization from Scientific Research, NWO). V. M. Nazarychev, I. V. Volgin, S. V. Larin, and S. V. Lyulin acknowledge the financial support from the Ministry of Education and Science of the Russian Federation under the Contract no. 14.Z50.31.0002 (megagrant of the Government of the Russian Federation according to the Resolution no. 220 of April 9, 2010). The atomistic simulations have been performed using the computational resources of the Institute of Macromolecular Compounds, Russian Academy of Sciences, the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University, and resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute.” We thank Daniel Bonn, Doros Theodorou, Thijs Michels, Rajesh Khare, as well as the industrial partners at SKF and Michelin for very fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Lyulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davris, T. et al. (2018). Linear Viscoelasticity of Polymers and Polymer Nanocomposites: Molecular-Dynamics Large Amplitude Oscillatory Shear and Probe Rheology Simulations. In: Kremer, F., Loidl, A. (eds) The Scaling of Relaxation Processes. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-72706-6_12

Download citation

Publish with us

Policies and ethics