Advertisement

Pathology of Lung Cancer

  • Rajiv KumarEmail author
Chapter
  • 793 Downloads
Part of the Clinicians’ Guides to Radionuclide Hybrid Imaging book series (CGRHI)

Abstract

Lung carcinoma is one of the lethal diseases afflicting the global population [1]. Tobacco smoking attributes to majority of cases of lung cancer. Despite decades of efforts to improve outcome through multimodality therapy, survival rates have remained dismal. This is partly attributable to relatively ineffective methods for early detection and lack of curative treatment for advanced disease [2, 3].

Keywords

Bronchioloalveolar Carcinoma Anaplastic Lymphoma Kinase Minimally Invasive Adenocarcinoma (MIA) Epidermal Growth Factor Receptor (EGFR) Napsin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Travis WD, Brambilla E, Müller-Hermelink HK, Harris CC. Pathology and genetics: tumours of the lung, pleura, thymus and heart. 3rd ed. Lyon: IARC; 2004.Google Scholar
  3. 3.
    Travis WD, Brambilla E, Burke AP, et al. WHO classification of tumours of lung, pleura, thymus and heart. 4th ed. Lyon: IARC; 2015.Google Scholar
  4. 4.
    Travis WD, Brambilla E, Riely GJ. New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol. 2013;31:992–1001.CrossRefPubMedGoogle Scholar
  5. 5.
    Shames DS, Wistuba II. The evolving genomic classification of lung cancer. J Pathol. 2014;232(2):121–33.CrossRefPubMedGoogle Scholar
  6. 6.
    Sholl LM. Biomarkers in lung adenocarcinoma: a decade of progress. Arch Pathol Lab Med. 2015;139(4):469–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Scagliotti GV, Parikh P, von Pawel J, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26(21):3543–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004;22(11):2184–91.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim ES, Herbst RS, Wistuba II, Lee JJ, Blumenschein GR Jr, Tsao A, Stewart DJ, Hicks ME, Erasmus J Jr, Gupta S, Alden CM, Liu S, Tang X, Khuri FR, Tran HT, Johnson BE, Heymach JV, Mao L, Fossella F, Kies MS, Papadimitrakopoulou V, Davis SE, Lippman SM, Hong WK. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov. 2011;1(1):44–53.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11(2):121–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou C, Wu YL, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12(8):735–42.CrossRefPubMedGoogle Scholar
  14. 14.
    Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sasaki T, Janne PA. New strategies for treatment of ALK rearranged non-small cell lung cancers. Clin Cancer Res. 2011;17(23):7213–8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shaw AT, Solomon B. Targeting anaplastic lymphoma kinase in lung cancer. Clin Cancer Res. 2011;17(8):2081–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Travis WD, Brambilla E, Noguchi M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6:244–85.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lee HJ, Lee CH, Jeong YJ, Chung DH, Goo JM, Park CM, Austin JH. IASLC/ATS/ERS International Multidisciplinary Classification of Lung Adenocarcinoma: novel concepts and radiologic implications. J Thorac Imaging. 2012;27(6):340–53.CrossRefPubMedGoogle Scholar
  20. 20.
    Cagle PT, Allen TC, Dacic S, et al. Revolution in lung cancer: new challenges for the surgical pathologist. Arch Pathol Lab Med. 2011;135(1):110–6.PubMedGoogle Scholar
  21. 21.
    Zugazagoitia J, Enguita AB, Nuñez JA, Iglesias L, Ponce S. The new IASLC/ATS/ERS lung adenocarcinoma classification from a clinical perspective:current concepts and future prospects. J Thorac Dis. 2014;6(Suppl 5):S526–36.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JH, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DB, Geisinger K, Hirsch FR, Ishikawa Y, Kerr KM, Noguchi M, Pelosi G, Powell CA, Tsao MS, Wistuba I, WHO Panel. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10(9):1243–60.CrossRefPubMedGoogle Scholar
  23. 23.
    Leighl NB, Rekhtman N, Biermann WA, et al. Molecular testing for selection of patients with lung cancer for epidermal growth factor receptor and anaplastic lymphoma kinase tyrosine kinase inhibitors: American Society of Clinical Oncology endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Guideline. J Clin Oncol. 2014;32:3673–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Travis WD, Brambilla E, Noguchi M, et al. Diagnosis of lung cancer in small biopsies and cytology: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification. Arch Pathol Lab Med. 2013;137:668–84.CrossRefPubMedGoogle Scholar
  25. 25.
    Travis WD, Brambilla E, Noguchi M, et al. Diagnosis of lung adenocarcinoma in resected specimens: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification. Arch Pathol Lab Med. 2013;137:685–705.CrossRefPubMedGoogle Scholar
  26. 26.
    von der Thüsen JH, Tham YS, Pattenden H, et al. Prognostic significance of predominant histologic pattern and nuclear grade in resected adenocarcinoma of the lung: potential parameters for a grading system. J Thorac Oncol. 2013;8:37–44.CrossRefPubMedGoogle Scholar
  27. 27.
    Suh J, Rekhtman N, Ladanyi M, Riely GJ, Travis WD. Testing of new IASLC/ATS/ERS criteria for diagnosis of lung adenocarcinoma (AD) in small biopsies: minimize immunohistochemistry (IHC) to maximize tissue for molecular studies. Mod Pathol. 2011;24(1S):424A.Google Scholar
  28. 28.
    Rekhtman N, Ang DC, Sima CS, et al. Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of whole-tissue sections with validation in small specimens. Mod Pathol. 2011;24(10):1348–59.CrossRefPubMedGoogle Scholar
  29. 29.
    Mukhopadhyay S, Katzenstein AL. Subclassification of non-small cell lung carcinomas lacking morphologic differentiation on biopsy specimens: Utility of an immunohistochemical panel containing TTF-1, napsin A, p63, and CK5/6. Am J Surg Pathol. 2011;35(1):15–25.CrossRefPubMedGoogle Scholar
  30. 30.
    Turner BM, Cagle PT, Sainz IM, Fukuoka J, Shen SS, Jagirdar J. Napsin A, a new marker for lung adenocarcinoma, is complementary and more sensitive and specific than thyroid transcription factor 1 in the differential diagnosis of primary pulmonary carcinoma: evaluation of 1674 cases by tissue microarray. Arch Pathol Lab Med. 2012;136:163–71.CrossRefPubMedGoogle Scholar
  31. 31.
    Bishop JA, Teruya-Feldstein J, Westra WH, Pelosi G, Travis WD, Rekhtman N. p40 ([DELTA]Np63) is superior to p63 for the diagnosis of pulmonary squamous cell carcinoma. Mod Pathol. 2012;25:405–15.CrossRefPubMedGoogle Scholar
  32. 32.
    Seo AN, Park TI, Jin Y, et al. Novel EGFR mutation-specific antibodies for lung adenocarcinoma: highly specific but not sensitive detection of an E746_A750 deletion in exon 19 and an L858R mutation in exon 21 by immunohistochemistry [published online ahead of print January 13, 2014]. Lung Cancer. Google Scholar
  33. 33.
    Ali G, Proietti A, Pelliccioni S, et al. ALK rearrangement in a large series of consecutive non-small cell lung cancers: comparison between a new immunohistochemical approach and fluorescence in situ hybridization for the screening of patients eligible for crizotinib treatment. Arch Pathol Lab Med. 2014;138(11):1449–58.CrossRefPubMedGoogle Scholar
  34. 34.
    Sholl LM, Weremowicz S, Gray SW, et al. Combined use of ALK immunohistochemistry and FISH for optimal detection of ALK-rearranged lung adenocarcinomas. J Thorac Oncol. 2013;8(3):322–8.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wynes MW, Sholl LM, Dietel M, et al. An international interpretation study using the ALK IHC antibody D5F3 and a sensitive detection kit demonstrates high concordance between ALK IHC and ALK FISH and between evaluators. J Thorac Oncol. 2014;9(5):631–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Larsen JE, Minna JD. Molecular biology of lung cancer: clinical implications. Clin Chest Med. 2011;32:703–40.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cooper WA, Lam DC, O’Toole SA, Minna JD. Molecular biology of lung cancer. J Thorac Dis. 2013;5(Suppl 5):S479–90.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Raparia K, Villa C, DeCamp MM, Patel JD, Mehta MP. Molecular profiling in non-small cell lung cancer: a step toward personalized medicine. Arch Pathol Lab Med. 2013;137(4):481–91.CrossRefPubMedGoogle Scholar
  39. 39.
    Imielinski M, Berger AH, Hammerman PS, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150(6):1107–20.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sholl LM, Aisner DL, Allen TC, Beasley MB, Cagle PT, Capelozzi VL, Dacic S, Hariri LP, Kerr KM, Lantuejoul S, Mino-Kenudson M, Raparia K, Rekhtman N, Roy-Chowdhuri S, Thunnissen E, Tsao M, Vivero M, Yatabe Y. Liquid biopsy in lung cancer: a perspective from members of the Pulmonary Pathology Society. Arch Pathol Lab Med. 2016;140(8):825–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of PathologyTata Memorial HospitalMumbaiIndia

Personalised recommendations