Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1446 Accesses

Abstract

A new era is fast approaching. Up to hundred devices and sensors will surround every person, spanning from simple low cost disposable sensors, to smart watches and wearables, from car radar for adaptive cruise control, blind spot detection, etc. to self driving car, not to mention high quality video applications for smartphones, tablet and 360\({^{\circ }}\) virtual reality. To enable this revolution 100\(\times \) higher data rate, 100\(\times \) higher network efficiency and better than 1 ms latency are needed. To ensure low cost and mass production capabilities CMOS technology will play a key role. Therefore, design techniques for broadband and low power building blocks for mm-Wave transceivers integrated in deep-scaled CMOS are attracting an ever increasing attention from industries and research institutes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Mazzanti, P. Andreani, Class-C harmonic CMOS VCOs, with a general result on phase noise. IEEE J. Solid-State Circuits 43(12), 2716–2729 (2008)

    Article  Google Scholar 

  2. M. Garampazzi et al., An intuitive analysis of phase noise fundamental limits suitable for benchmarking LC oscillators. IEEE J. Solid-State Circuits 49(3), 635–645 (2014)

    Article  Google Scholar 

  3. A. Moroni, R. Genesi, D. Manstretta, Analysis and design of a 54 GHz distributed hybrid wave oscillator array with quadrature outputs. IEEE J. Solid-State Circuits 49(5), 1158–1172 (2014)

    Article  Google Scholar 

  4. A. Mazzanti, M. Sosio, M. Repossi, F. Svelto, A 24 GHz subharmonic direct conversion receiver in 65 nm CMOS. IEEE Trans. Circuits Syst. I: Regul. Pap. 58(1), 88–97 (2011)

    Article  MathSciNet  Google Scholar 

  5. J. Zhao, E. Rahimi, F. Svelto, A. Mazzanti, A SiGe BiCMOS E-band power amplifier with 22% PAE at 18dBm OP\(_{1{\rm dB}}\) and 8.5% at 6dB back-off leveraging current clamping in a common-base stage, 2017 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA (2017), pp. 1–3

    Google Scholar 

  6. I. Fabiano, M. Sosio, A. Liscidini, R. Castello, SAW-less analog front-end receivers for TDD and FDD. IEEE J. Solid-State Circuits 48(12), 3067–3079 (2013)

    Article  Google Scholar 

  7. S. Kulkarni, P. Reynaert, A 60 GHz power amplifier with AM-PM distortion cancellation in 40 nm CMOS. IEEE Trans. Microw. Theory Tech. 64(7), 2284–2291 (2016)

    Article  Google Scholar 

  8. W.H. Doherty, A new high efficiency power amplifier for modulated waves. Proc. Inst. Radio Eng. 24(9), 1163–1182 (1936)

    Google Scholar 

  9. E. Kaymaksut, P. Reynaert, Transformer-based uneven Doherty power amplifier in 90 nm CMOS for WLAN applications. IEEE J. Solid-State Circuits 47(7), 1659–1671 (2012)

    Article  Google Scholar 

  10. E. Kaymaksut, B. Franois, P. Reynaert, Analysis and optimization of transformer-based power combining for back-off efficiency enhancement. IEEE Trans. Circuits Syst. I: Regul. Pap. 60(4), 825–835 (2013)

    Article  Google Scholar 

  11. E. Kaymaksut, P. Reynaert, Dual-mode CMOS Doherty LTE power amplifier with symmetric hybrid transformer. IEEE J. Solid-State Circuits 50(9), 1974–1987 (2015)

    Article  Google Scholar 

  12. M. Zen, K. Andersson, C. Fager, Symmetrical Doherty power amplifier with extended efficiency range. IEEE Trans. Microw. Theory Tech. 64(4), 1273–1284 (2016)

    Article  Google Scholar 

  13. C.R. Chappidi, K. Sengupta, 20.2 A frequency-reconfigurable mm-wave power amplifier with active-impedance synthesis in an asymmetrical non-isolated combiner, IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, CA (2016), pp. 344–345

    Google Scholar 

  14. S. Hu, F. Wang, H. Wang, A 28 GHz, 37 GHz, 39 GHz Multiband linear Doherty power amplifier for 5G massive MIMO applications, IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers. San Francisco, CA (2017), pp. 1–3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Vigilante .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vigilante, M., Reynaert, P. (2018). Conclusion. In: 5G and E-Band Communication Circuits in Deep-Scaled CMOS. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-72646-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72646-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72645-8

  • Online ISBN: 978-3-319-72646-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics