Skip to main content

New Approach to Mathematical Model of Elastic in Two-Dimensional Composites

  • Conference paper
  • First Online:
Modern Problems in Applied Analysis

Part of the book series: Trends in Mathematics ((TM))

  • 816 Accesses

Abstract

This paper is devoted to boundary value problems for elastic problems modelled by the biharmonic equation in two-dimensional composites. All the problems are studied via the method of complex potentials. The considered boundary value problems for analytic functions are reduced to functional-differential equations. Applications to calculation of the effective properties tensor are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Byström, N. Jekabsons, J. Varna, An evaluation of different models for prediction of elastic properties of woven composites. Compos. Part B 31, 7–20 (2000)

    Article  Google Scholar 

  2. S. Berggren, D. Lukkassen, A. Meidell, L. Simula, Some methods for calculating stiffness properties of periodic structure. Appl. Math. 48(2), 97–110 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Franců, Homogenization of linear elasticity equations. Apl. Mat. 27, 96–117 (1982)

    MathSciNet  MATH  Google Scholar 

  4. L. Greengard, J. Helsing, On the numerical evaluation of elastostatic fields in locally isotropic two-dimensional composites. J. Mech. Phys. Solids 46, 1441–1462 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Reprint of the 2nd English edn. (Springer-Science + Business Media, Dordrecht, 1977)

    Google Scholar 

  6. I. Jasiuk, J. Chen, M.F. Thorpe, Elastic Properties of Two-Dimensional Composites Containing Polygonal Holes. Materials Division, vol. 35 (American Society of Mechanical Engineers, New York, 1992), pp. 61–73

    Google Scholar 

  7. A.M. Linkov, Boundary Integral Equations in Elasticity Theory (Kluwer Academic Publishers, Dordrecht, 2002)

    Book  MATH  Google Scholar 

  8. J. Wang, S.L. Crouch, S.G. Mogilevskaya, A complex boundary integral method for multiple circular holes in an infinite plane. Eng. Anal. Bound. Elem. 27(8), 789–802 (2003)

    Article  MATH  Google Scholar 

  9. S.G. Mogilevskaya, V.I. Kushch, H.K. Stolarski, S.L. Crouch, Evaluation of the effective elastic moduli of tetragonal fiber-reinforced composites based on Maxwell’s concept of equivalent inhomogeneity. Int. J. Solids Struct. 50(25–26), 4161–4172 (2013)

    Article  Google Scholar 

  10. V. Mityushev, S.V. Rogosin, Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions. Theory and Applications (Chapman and Hall/CRC, London, 1999)

    Google Scholar 

  11. P. Drygaś, Generalized Eisenstein functions. J. Math. Anal. Appl. 444(2), 1321–1331 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. V.Ya. Natanson, On the stresses in a stretched plate weakened by identical holes located in chessboard arrangement. Mat. Sb. 42(5), 616–636 (1935)

    Google Scholar 

  13. L.A. Filshtinsky, V. Mityushev, Mathematical Models of Elastic and Piezoelectric Fields in Two-Dimensional Composites, ed. by P.M. Pardalos, T.M. Rassias. Mathematics Without Boundaries (Springer, New York, 2014), pp. 217–262

    Google Scholar 

  14. E.I. Grigolyuk, L.A. Filshtinsky, Perforated Plates and Shells (Nauka, Moscow, 1970); [in Russian]

    Google Scholar 

  15. E.I. Grigolyuk, L.A. Filshtinsky, Periodic Piecewise-Homogeneous Elastic Structures (Nauka, Moscow, 1992); [in Russian]

    Google Scholar 

  16. P. Drygaś, V. Mityushev, Effective elastic properties of random two-dimensional composites. Int. J. Solids Struct. 97–98, 543–553 (2016)

    Article  Google Scholar 

  17. P. Drygaś, Functional-differential equations in a class of analytic functions and its application to elastic composites. Complex Variables Elliptic Equ. 61(8), 1145–1156 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Mityushev, Thermoelastic plane problem for material with circular inclusions. Arch. Mech. 52(6), 915–932 (2000)

    MATH  Google Scholar 

  19. A. Weil, Elliptic Functions According to Eisenstein and Kronecker (Springer, Berlin, 1976)

    Book  MATH  Google Scholar 

  20. N.I. Akhiezer, Elements of the Theory of Elliptic Functions (American Mathematical Society, Providence, RI, 1990)

    Book  MATH  Google Scholar 

  21. V.V. Mityushev, E. Pesetskaya, S.V. Rogosin, Analytical Mathods for Heat Conduction in Composites and Porous Media, ed. by A. Ochsner, G.E. Murch, M.J.S. de Lemos (Wiley, New York, 2008)

    Google Scholar 

  22. V.V. Mityushev, Representative cell in mechanics of composites and generalized Eisenstein’s-Rayleigh sums. Complex Variables 51(8–11), 1033–1045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. V. Mityushev, N. Rylko, Optimal distribution of the nonoverlapping conducting disks. Multiscale Model. Simul. 10(1), 180–190 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Czapla, W. Nawalaniec, V. Mityushev, Effective conductivity of random two-dimensional composites with circular non-overlapping inclusions. Comput. Mater. Sci. 63, 118–126 (2012)

    Article  Google Scholar 

  25. J.W. Eischen, S. Torquato, Determining elastic behavior of composites by the boundary element method. J. Appl. Phys. 74, 159–170 (1993)

    Article  Google Scholar 

  26. P. Drygaś, V. Mityushev, Effective conductivity of unidirectional cylinders with interfacial resistance. Q. J. Mech. Appl. Math. 62, 235–262 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Yakubovich, P. Drygaś, V. Mityushev, Closed-form evaluation of 2D static lattice sums. Proc. R. Soc. A 472, 20160510 (2016); https://doi.org/10.1098/rspa.2016.0510

    Article  MATH  Google Scholar 

  28. P. Drygaś, Steady heat conduction of material with coated inclusion in the case of imperfect contact. Math. Model. Anal. 12(3), 291–296 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Drygaś, A functional-differential equation in a class of analytic functions and its application. Aequationes Math. 73(3), 22–232 (2007)

    MathSciNet  MATH  Google Scholar 

  30. P. Drygaś, Functional-differential equations in Hardy-type classes. Tr. Inst. Mat. 15(1), 105–110 (2007)

    Google Scholar 

  31. V.V. Mityushev, Exact solution of the R-linear problem for a disc in a class of doubly periodic functions. J. Appl. Funct. Anal. 2(2), 115–127 (2007)

    MathSciNet  MATH  Google Scholar 

  32. V. Mityushev, Transport properties of two-dimensional composite materials with circular inclusions. Proc. R. Soc. Lond. A 455, 2513–2528 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. V.V. Mityushev, E. Pesetskaya, S.V. Rogosin, Analytical methods for heat conduction in composites and porous media, in Cellular and Porous Materials: Thermal Properties Simulation and Prediction, ed. by A. Öchsner, G.E. Murch, M.J.S. de Lemos (Wiley, Weinheim, 2008)

    Google Scholar 

  34. V. Mityushev, N. Rylko, Maxwell’s approach to effective conductivity and its limitations. Q. J. Mech. Appl. Math. 66(2), 241–251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research has been partially supported by the Centre for Innovation and Transfer of Natural Science and Engineering Knowledge of University of Rzeszów (grant No. WMP/GD-09/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Drygaś .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Drygaś, P. (2018). New Approach to Mathematical Model of Elastic in Two-Dimensional Composites. In: Drygaś, P., Rogosin, S. (eds) Modern Problems in Applied Analysis. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-72640-3_7

Download citation

Publish with us

Policies and ethics