Advertisement

Ratio of Uniforms

  • Luca Martino
  • David Luengo
  • Joaquín Míguez
Chapter
Part of the Statistics and Computing book series (SCO)

Abstract

This chapter provides a detailed description of the so-called ratio-of-uniforms (RoU) methods. The RoU and the generalized RoU (GRoU) techniques were introduced in Kinderman and Monahan (ACM Trans Math Softw 3(3):257–260, 1977); Wakefield et al. (Stat Comput 1(2):129–133, 1991) as bivariate transformations of the bidimensional region \(\mathcal {A}_0\) below the target pdf p o (x) ∝ p(x). To be specific, the RoU techniques can be seen as a transformation of a bidimensional uniform random variable, defined over \(\mathcal {A}_0\), into another two-dimensional random variable defined over an alternative set \(\mathcal {A}\). RoU schemes also convert samples uniformly distributed on \(\mathcal {A}\) into samples with density p o (x) ∝ p(x) (which is equivalent to draw uniformly from \(\mathcal {A}_0\)). Therefore, RoU methods are useful when drawing uniformly from the region \(\mathcal {A}\) is comparatively simpler than drawing from p o (x) itself (i.e., simpler than drawing uniformly from \(\mathcal {A}_0\)). In general, RoU algorithms are applied in combination with the rejection sampling principle and they turn out especially advantageous when \(\mathcal {A}\) is bounded. In this chapter, we present first the basic theory underlying RoU methods, and then study in depth the connections with other sampling techniques. Several extensions, as well as different variants and point of views, are discussed.

References

  1. 1.
    L. Barabesi, Optimized ratio-of-uniforms method for generating exponential power variates. Stat. Appl. 5, 149–155 (1993)Google Scholar
  2. 2.
    L. Barabesi, Random Variate Generation by Using the Ratio-of-Uniforms Method. Serie Ricerca-Monografie 1 (Nuova Immagine, Siena, 1993)Google Scholar
  3. 3.
    G. Barbu, On computer generation of random variables by transformations of uniform varaibles. Soc. Sci. Math. R. S. Rom. Tome 26 74(2), 129–139 (1982)Google Scholar
  4. 4.
    M.C. Bryson, M.E. Johnson, Constructing and simulating multivariate distributions using Khintchine’s theorem. J. Stat. Comput. Simul. 16(2), 129–137 (1982)Google Scholar
  5. 5.
    Y.P. Chaubey, G.S. Mudholkar, M.C. Jones, Reciprocal symmetry, unimodality and Khintchine’s theorem. Proc. R. Soc. A Math. Phys. Eng. Sci. 466(2119), 2079–2096 (2010)Google Scholar
  6. 6.
    Y. Chung, S. Lee, The generalized ratio-of-uniform method. J. Appl. Math. Comput. 4(2), 409–415 (1997)Google Scholar
  7. 7.
    J.H. Curtiss, On the distribution of the quotient of two chance variables. Ann. Math. Stat. 12(4), 409–421 (1941)Google Scholar
  8. 8.
    P. Damien, S.G. Walker, Sampling truncated normal, beta, and gamma densities. J. Comput. Graph. Stat. 10(2), 206–215 (2001)Google Scholar
  9. 9.
    B.M. de Silva, A class of multivariate symmetric stable distributions. J. Multivar. Anal. 8(3), 335–345 (1978)Google Scholar
  10. 10.
    L. Devroye, Random variate generation for unimodal and monotone densities. Computing 32, 43–68 (1984)Google Scholar
  11. 11.
    L. Devroye, Non-uniform Random Variate Generation (Springer, New York, 1986)Google Scholar
  12. 12.
    U. Dieter, Mathematical aspects of various methods for sampling from classical distributions, in Proceedings of Winter Simulation Conference (1989)Google Scholar
  13. 13.
    J.E. Gentle, Random Number Generation and Monte Carlo Methods (Springer, New York, 2004)zbMATHGoogle Scholar
  14. 14.
    C. Groendyke, Ratio-of-uniforms Markov Chain Monte Carlo for Gaussian process models. Thesis in Statistics, Pennsylvania State University (2008)Google Scholar
  15. 15.
    W. Hörmann, A rejection technique for sampling from T-concave distributions. ACM Trans. Math. Softw. 21(2), 182–193 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    W. Hörmann, J. Leydold, G. Derflinger, Automatic Nonuniform Random Variate Generation (Springer, New York, 2003)zbMATHGoogle Scholar
  17. 17.
    M.C. Jones, On Khintchine’s theorem and its place in random variate generation. Am. Stat. 56(4), 304–307 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M.C. Jones, A.D. Lunn, Transformations and random variate generation: generalised ratio-of-uniforms methods. J. Stat. Comput. Simul. 55(1), 49–55 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A.J. Kinderman, J.F. Monahan, Computer generation of random variables using the ratio of uniform deviates. ACM Trans. Math. Softw. 3(3), 257–260 (1977)CrossRefzbMATHGoogle Scholar
  20. 20.
    J. Leydold, Automatic sampling with the ratio-of-uniforms method. ACM Trans. Math. Softw. 26(1), 78–98 (2000)CrossRefzbMATHGoogle Scholar
  21. 21.
    J. Leydold, Short universal generators via generalized ratio-of-uniforms method. Math. Comput. 72, 1453–1471 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    J.S. Liu, Monte Carlo Strategies in Scientific Computing (Springer, New York, 2004)CrossRefGoogle Scholar
  23. 23.
    M.M. Marjanovic, Z. Kadelburg, Limits of composite functions. Teach. Math. 12(1), 1–6 (2009)CrossRefGoogle Scholar
  24. 24.
    G. Marsaglia, Ratios of normal variables and ratios of sums of uniform variables. Am. Stat. Assoc. 60(309), 193–204 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    J. Monahan, An algorithm for generating chi random variables. Trans. Math. Softw. 13(2), 168–172 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    R.A. Olshen, L.J. Savage, A generalized unimodality. J. Appl. Probab. 7(1), 21–34 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    C.J. Perez, J. Martín, C. Rojano, F.J. Girón, Efficient generation of random vectors by using the ratio-uniforms method with ellipsoidal envelopes. Stat. Comput. 18(4), 209–217 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    C.P. Robert, G. Casella, Monte Carlo Statistical Methods (Springer, New York, 2004)CrossRefzbMATHGoogle Scholar
  29. 29.
    L.A. Shepp, Symmetric random walk. Trans. Am. Math. Soc. 104, 144–153 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    S. Stefanescu, I. Vaduva, On computer generation of random vectors by transformations of uniformly distributed vectors. Computing 39, 141–153 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    I. Vaduva, Computer generation of random vectors based on transformations on uniform distributed vectors, in Proceedings of Sixth Conference on Probability Theory, Brasov (1982), pp. 589–598Google Scholar
  32. 32.
    J.C. Wakefield, A.E. Gelfand, A.F.M. Smith, Efficient generation of random variates via the ratio-of-uniforms method. Stat. Comput. 1(2), 129–133 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luca Martino
    • 1
  • David Luengo
    • 2
  • Joaquín Míguez
    • 1
  1. 1.Department of Signal Theory and CommunicationsCarlos III University of MadridMadridSpain
  2. 2.Department of Signal Theory and CommunicationsTechnical University of MadridMadridSpain

Personalised recommendations