Skip to main content

Guided Bone Regeneration (GBR) for Implants in the Aesthetic Zone

  • Chapter
  • First Online:
Book cover Implants in the Aesthetic Zone
  • 1348 Accesses

Abstract

Guided bone regeneration follows the principles of guided tissue regeneration, where an occlusive membrane is utilized to provide a barrier and allow bone regeneration to occur at a specific oral defect. Particulate bone substitutes are utilized to provide a scaffold and direct bone formation, which will occur by subsequent remodeling of the graft material. The success of the grafting procedure is directly dependent on a number of factors, including the host’s ability to heal, the proper execution of the procedure, and the materials utilized. Adequate postoperative management, including administration of antibiotics and regular follow-ups, will minimize the incidence of complications. With a success rate above 90%, guided bone regeneration procedures have become a predictable approach to regenerate deficient sites for the dental implant patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melcher AH. On the repair potential of periodontal tissues. J Periodontol. 1976;47(5):256–60.

    Article  Google Scholar 

  2. Nyman S, et al. New attachment following surgical treatment of human periodontal disease. J Clin Periodontol. 1982;9(4):290–6.

    Article  Google Scholar 

  3. Dahlin C, et al. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81(5):672–6.

    Article  Google Scholar 

  4. Simion M, Trisi P, Piattelli A. Vertical ridge augmentation using a membrane technique associated with osseointegrated implants. Int J Periodontics Restorative Dent. 1994;14(6):496–511.

    PubMed  Google Scholar 

  5. Burkhardt R, Lang NP. Role of flap tension in primary wound closure of mucoperiosteal flaps: a prospective cohort study. Clin Oral Implants Res. 2010;21:50–4.

    Article  Google Scholar 

  6. Lee SH, Lim P, Yoon HJ. The influence of cortical perforation on guided bone regeneration using synthetic bone substitutes: a study of rabbit cranial defects. Int J Oral Maxillofac Implants. 2014;29:464–71.

    Article  Google Scholar 

  7. Nishimura I, Shimizu Y, Ooya K. Effects of cortical bone perforation on experimental guided bone regeneration. Clin Oral Implants Res. 2004;15:293–300.

    Article  Google Scholar 

  8. Hämmerle CH, Schmid J, Lang NP, Olah AJ. Temporal dynamics of healing in rabbit cranial defects using guided bone regeneration. J Oral Maxillofac Surg. 1995;53:167–74.

    Article  Google Scholar 

  9. Cha JK, Kim CS, Choi SH, Cho KS, Chai JK, Jung UW. The influence of perforating the autogenous block bone and the recipient bed in dogs. Part II: histologic analysis. Clin Oral Implants Res. 2012;23:987–92.

    Article  Google Scholar 

  10. Shapiro F. Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process. J Bone Joint Surg Am. 1988;70:1067–81.

    Article  Google Scholar 

  11. Siddiqui NA, Owen JM. Clinical advances in bone regeneration. Curr Stem Cell Res Ther. 2013;8:192.

    Article  Google Scholar 

  12. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8:114.

    Article  Google Scholar 

  13. Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998;355:S7.

    Article  Google Scholar 

  14. Aghaloo T, Felsenfeld AL. Principles of repair and grafting of bone and cartilage. In: Bagheri SC, Horswell BB, Khan HA, editors. Current therapy in oral and maxillofacial surgery. Philadelphia: Saunders; 2012.

    Google Scholar 

  15. Ulma R, Aghaloo T, Freymiller E. Wound healing. In: Fonseca RJ, Barber HD, Powers MP, Frost DE, editors. Oral and maxillofacial trauma. 4th ed. St. Louis: Elsevier; 2013. p. 9.

    Chapter  Google Scholar 

  16. Urban IA, Nagursky H, Lozada JL, Nagy K. Horizontal ridge augmentation with a collagen membrane and a combination of particulated autogenous bone and anorganic bovine bone-derived mineral: a prospective case series in 25 patients. Int J Periodontics Restorative Dent. 2013;33:299.

    Article  Google Scholar 

  17. Rickert D, Sauerbier S, Nagursky H, Menne D, Vissink A, Raghoebar GM. Maxillary sinus floor elevation with bovine bone mineral combined with either autogenous bone or autogenous stem cells: a prospective randomized clinical trial. Clin Oral Implants Res. 2011;22:251.

    Article  Google Scholar 

  18. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.

    Article  Google Scholar 

  19. Mordenfeld A, Hallman M, Johansson CB, Albrektsson T. Histological and histomorphometrical analyses of biopsies harvested 11 years after maxillary sinus floor augmentation with deproteinized bovine and autogenous bone. Clin Oral Implants Res. 2010;21(9):961–70.

    PubMed  Google Scholar 

  20. Lundgren S, Cricchio G, Hallman M, Jungner M, Rasmusson L, Sennerby L. Sinus floor elevation procedures to enable implant placement and integration: techniques, biological aspects and clinical outcomes. Periodontol. 2017;73(1):103–20.

    Article  Google Scholar 

  21. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  Google Scholar 

  22. Hannink G, Arts JJC. Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury. 2011;42:S22–5.

    Article  Google Scholar 

  23. Hing KA. Bioceramic bone graft substitutes: influence of porosity and chemistry. Int J Appl Ceram Technol. 2005;2:184–99.

    Article  Google Scholar 

  24. Blokhuis TJ, Termaat MF, den Boer FC, Patka P, Bakker FC, Haarman HJ. Properties of calcium phosphate ceramics in relation to their in vivo behavior. J Trauma. 2000;48:179–86.

    Article  Google Scholar 

  25. Boyne PJ, Cole MD, Stringer D, Shafqat JP. A technique for osseous restoration of deficient edentulous maxillary ridges. J Oral Maxillofac Surg. 1985;43:87–91.

    Article  Google Scholar 

  26. Bartee BK. Evaluation of new polytetrafluoroethylene-guided tissue regeneration membrane in healing extraction sites. Compendium. 1998;19:1256–8. 1260, 1262–4.

    PubMed  Google Scholar 

  27. Bartee BK. The use of high-density polytetrafluoroethylene membrane to treat osseous defects clinical reports. Implant Dent. 1995;4:21–6.

    Article  Google Scholar 

  28. Scantlebury TV. 1982–1992: a decade of technology development for guided tissue regeneration. J Periodontol. 1993;64:1129–37.

    Article  Google Scholar 

  29. Leknes KN, Røynstrand IT, Selvig KA. Human gingival tissue reactions to silk and expanded polytetrafluoroethylene sutures. J Periodontol. 2005;76(1):34–42.

    Article  Google Scholar 

  30. Edlich RF, Panek PH, Rodeheaver GT, Turnbull VG, Kurtz LD, Edgerton MT. Physical and chemical configuration of sutures in the development of surgical infection. Ann Surg. 1973;177:679–88.

    Article  Google Scholar 

  31. Lilly GE. Reaction of oral tissues to suture materials. Oral Surg Oral Med Oral Pathol. 1968;26:128–33.

    Article  Google Scholar 

  32. Lilly GE, Armstrong JH, Salem JE, Cutcher JL. Reaction of oral tissues to suture materials. Oral Surg Oral Med Oral Pathol. 1968;26:592–9.

    Article  Google Scholar 

  33. Burkhardt R, Preiss A, Joss A, Lang NP. Influence of suture tension to the tearing characteristics of the soft tissues: an in vitro experiment. Clin Oral Implants Res. 2008;19:314–9.

    Article  Google Scholar 

  34. Selvig KA, Kersten B, Chamberlain A, Wikesjö UME, Nilveus R. Regenerative surgery of intrabony periodontal defects using e-PTFE barrier membranes. Scanning electron microscopic evaluation of retrieved membranes versus clinical healing. J Periodontol. 1992;63:974–8.

    Article  Google Scholar 

  35. Wilderman M, Wentz F, Orban B. Histogenesis of repair after mucogingival surgery. J Periodontol. 1960;31:283–99.

    Article  Google Scholar 

  36. Nowzari H, Slots J. Microorganism in polytetrafluoroethylene barrier membranes for guided tissue regeneration. J Clin Periodontol. 1994;21:203–10.

    Article  Google Scholar 

  37. Tinti C, Parma-Benfenati S. Vertical ridge augmentation: surgical protocol and retrospective evaluation of 48 consecutively inserted implants. Int J Periodontics Restorative Dent. 1998;18(5):434–43.

    PubMed  Google Scholar 

  38. Hitti R, Kerns D. Guided bone regeneration in the oral cavity: a review. Open Pathol J. 2011;5:33–45.

    Article  Google Scholar 

  39. Pi-Anfruns J. Complications in implant dentistry. Alpha Omegan. 2014;107(1):8–12.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Pi-Anfruns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pi-Anfruns, J., Le, B. (2019). Guided Bone Regeneration (GBR) for Implants in the Aesthetic Zone. In: Schoenbaum, T. (eds) Implants in the Aesthetic Zone. Springer, Cham. https://doi.org/10.1007/978-3-319-72601-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72601-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72600-7

  • Online ISBN: 978-3-319-72601-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics