Some New Results on the Stability of Fractional Integro-Differential Equations Under Uncertainty

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 700)

Abstract

In this research, we introduce the concept of \(E_\alpha \)-type stability for fractional integro-differential equations with uncertainty. We propose different types of fuzzy \(E_\alpha \) stabilities for some classes of fuzzy integro-differential equations of fractional order. Besides, we present some new findings on the existence and uniqueness of the solutions of fuzzy integro-differential equations of fractional order using the proposed new concept.

Keywords

Fractional integro-differential equations Ulam stability Existence and uniqueness of solution Fuzzy settings theory Uncertainty 

Notes

Acknowledgements

The authors acknowledge the financial support from Universiti Putra Malaysia under Putra-IPB grant: GP-IPB/2017/9542402.

References

  1. 1.
    Ulam, S.M.: A Collection of Mathematical Problems. Interscience, New York (1960)MATHGoogle Scholar
  2. 2.
    Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27, 222–224 (1941)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Rassias, Th.M.: On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)Google Scholar
  4. 4.
    Hyers, D.H., Isac, G., Rassias, Th.M.: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)Google Scholar
  5. 5.
    Jung, S.-M.: Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)MATHGoogle Scholar
  6. 6.
    Jung, S.-M.: Hyers–Ulam stability of linear differential equations of first order. Appl. Math. Lett. 17, 1135–1140 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Wang, G., Zhou, M., Sun, L.: Hyers–Ulam stability of linear differential equations of first order. Appl. Math. Lett. 21, 1024–1028 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Rezaei, H., Jung, S.-M., Rassias, Th.M.: Laplace transform and Hyers–Ulam stability of linear differential equations. J. Math. Anal. Appl. 403, 244–251 (2013)Google Scholar
  9. 9.
    Abdollahpour, M.R., Aghayari, R., Rassias, Th.M.: HyersUlam stability of associated Laguerre differential equations in a subclass of analytic functions. J. Math. Anal. Appl. 437, 605–612 (2016)Google Scholar
  10. 10.
    Huang, J., Li, Y.: Hyers-Ulam stability of linear functional differential equations. J. Math. Anal. Appl. 426, 1192–1200 (2015)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kim, B., Jung, S.M.: Bessel’s differential equation and its Hyers–Ulam stability. J. Inequalities Appl. 2007(1), 1–8 (2007)MathSciNetMATHGoogle Scholar
  12. 12.
    Kim, S.S., Cho, Y.J., Eshaghi Gordji, M.: On the generalized Hyers–Ulam–Rassias stability problem of radical functional equations. J. Inequalities Appl. 2012(1), 1–13 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Li, C.P., Zhang, F.R.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193, 27–47 (2011)CrossRefGoogle Scholar
  14. 14.
    Li, Y., Chen, Y., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 19651969 (2009)MathSciNetMATHGoogle Scholar
  15. 15.
    Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittageffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Wang, J., Lv, L., Zhou, Y.: Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 63, 1–10 (2011)MathSciNetMATHGoogle Scholar
  17. 17.
    Wang, J., Lv, L., Zhou, Y.: New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2530–2538 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wang, J., Zhou, Y., Fečkan, M.: Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 64, 3389–3405 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Wang, J., Li, X.: \(E_\alpha \)-Ulam type stability of fractional order ordinary differential equations. J. Appl. Math. Comput. 45, 449–459 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Agarwal, R.P., Lakshmikantham, V., Nieto, J.J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 72, 2859–2862 (2010)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Allahviranloo, T., Gouyandeh, Z., Armand, A.: Fuzzy fractional differential equations under generalized fuzzy Caputo derivative. J. Intell. Fuzzy Syst. 26, 1481–90 (2014)MathSciNetMATHGoogle Scholar
  22. 22.
    Allahviranloo, T., Salahshour, S., Abbasbandy, S.: Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 16, 297–302 (2012)CrossRefMATHGoogle Scholar
  23. 23.
    Salahshour, S., Allahviranloo, T., Abbasbandy, S., Baleanu, D.: Existence and uniqueness results for fractional differential equations with uncertainty. Adv. Differ. Equ. 2012, 112 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Mazandarani, M., Vahidian Kamyad, A.: Modified fractional Euler method for solving fuzzy fractional initial value problem. Commun. Nonlinear Sci. Numer. Simul. 18, 12–21 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Mazandarani, M., Najariyan, M.: Type-2 fuzzy fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 19, 2354–2372 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Salahshour, S., Allahviranloo, T., Abbasbandy, S.: Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear. Sci. Numer. Simul. 17, 1372–1381 (2012)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Ahmadian, A., Chang, C.S., Salahshour, S.: Fuzzy approximate solutions to fractional differential equations under uncertainty: operational matrices approach. IEEE Trans. Fuzzy Syst.  https://doi.org/10.1109/TFUZZ.2016.2554156
  28. 28.
    Ahmadian, A., Salahshour, S., Amirkhani, H., Baleanu, D., Yunus, R.: An efficient Tau method for numerical solution of a fuzzy fractional kinetic model and its application to oil palm frond as a promising source of xylose. J. Comput. Phys. 264, 562–564 (2015)CrossRefMATHGoogle Scholar
  29. 29.
    Malinowski, M.T.: Random fuzzy fractional integral equations-theoretical foundations. Fuzzy Sets Syst. (In press).  https://doi.org/10.1016/j.fss.2014.09.019
  30. 30.
    Hoa, N.V.: Fuzzy fractional functional differential equations under Caputo gH-differentiability. Commun. Nonlinear Sci. Numer. Simul. 22, 1134–1157 (2015)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Hoa, N.V.: Fuzzy fractional functional integral and differential equations. Fuzzy Sets Syst. (In press).  https://doi.org/10.1016/j.fss.2015.01.009
  32. 32.
    Mirmostafaee, A.K., Moslehian, M.: Fuzzy versions of Hyers–Ulam–Rassias theorem. Fuzzy Sets Syst. 159, 720–729 (2008)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Mirmostafaee, A.K., Mirzavaziri, M., Moslehian, M.S.: Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst. 159, 730–738 (2008)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Shen, Y.: On the Ulam stability of first order linear fuzzy differential equations under generalized differentiability. Fuzzy Sets Syst. (In press).  https://doi.org/10.1016/j.fss.2015.01.002
  35. 35.
    Diamond, P., Kloeden, P.E.: Metric Spaces of Fuzzy Sets: Theory and Applications. World Scientific, Singapore (1994)CrossRefMATHGoogle Scholar
  36. 36.
    Bede, B., Rudas, I.J., Bencsik, A.L.: First order linear fuzzy differential equations under generalized differentiability. Inform. Sci. 177, 1648–1662 (2007)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractionaldifferential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • A. Ahmadian
    • 1
  • S. Salahshour
    • 2
  • N. Senu
    • 1
  • F. Ismail
    • 1
  1. 1.Laboratory of Computational Sciences and Mathematical Physics, Institute for Mathematical Research (INSPEM)Universiti Putra MalaysiaSerdangMalaysia
  2. 2.Young Researchers and Elite Club, Mobarakeh BranchIslamic Azad UniversityMobarakehIran

Personalised recommendations