An Improved Low Contrast Image in Normalization Process for Iris Recognition System

  • Abdulrahman Aminu Ghali
  • Sapiee Jamel
  • Kamaruddin Malik Mohamad
  • Shamsul Kamal Ahmad Khalid
  • Zahraddeen Abubakar Pindar
  • Mustafa Mat Deris
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 700)


Iris recognition system is one of the most predominant methods used for personal identification in the modern days. Low quality iris image such as low contrast and poor illumination presents a setback for iris recognition as the acceptance or rejection rates of verified user depend solely on the image quality. This paper presents a new method for improving histogram equalization technique to obtained high contrast in normalization process thereby reducing False Rejection Rate (FRR) and False Acceptance Rate (FAR). The proposed technique is developed using C++ and tested using four datasets CASIA, UBIRIS, MMU and ICE 2005. The experimental results show that the proposed technique has an accuracy of 95%, as compared to the existing techniques: CLAHE, AHE, MAHE and HE which have an accuracy of a 93.0, 85.7, 92.8 and 90.71% respectively. Hence it can be concluded that the proposed technique is a better enhancement technique compared to the existing techniques for image enhancement.


Iris recognition Histogram equalization Image enhancement Normalization 



This research was fully sponsored by the Office for Research, Innovation, Commercialization and Consultancy (ORICC), with VOT No U614. The authors fully acknowledge Universiti Tun Hussein Onn Malaysia (UTHM) for the financial support which has made this research possible.


  1. 1.
    Othman, M.F.: Fusion techniques for iris recognition in degraded sequences, pp. 4–5, (2016)Google Scholar
  2. 2.
    Li, P., Ma, H.: Iris recognition in non-ideal imaging conditions. Pattern Recognit. Lett. 33(8), 1012–1018 (2012)Google Scholar
  3. 3.
    Vatsa, M.: Comparison of iris recognition algorithms. In: Proceedings of International Conference on Intelligent Sensing and Information Processing, pp. 354–358 (2004)Google Scholar
  4. 4.
    Alvarez-Betancourt, Y., Garcia-Silvente, M.: A keypoints-based feature extraction method for iris recognition under variable image quality conditions. Know.-Based Syst. 92, 169–182 (2015)Google Scholar
  5. 5.
    Sanpachai, H., Malisuwan, S.: A study of image enhancement for iris recognition. J. Ind. Intell. Inf. 3(1), 61–64 (2015)Google Scholar
  6. 6.
    Shivakumara, P., Huang, W., Phan, T.Q., Tan, C.L.: Accurate video text detection through classification of low and high contrast images. Pattern Recogn. 43, 2165–2185 (2010)Google Scholar
  7. 7.
    Othman, N., Dorizzi, B., Garcia-Salicetti, S.: OSIRIS: an open source iris recognition software. Pattern Recogn. Lett. 82, 124–131 (2016)Google Scholar
  8. 8.
    Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. (1993)Google Scholar
  9. 9.
    Daugman, J., Downing, C.: Epigenetic randomness, complexity and singularity of human iris patterns. Proc. R. Soc. B: Biol. Sci. 1737–1740 (2001)Google Scholar
  10. 10.
    Daugman, J.: How iris recognition works. IEEE Trans. Circ. Syst. Video Technol. 14(1), 21–30 (2004)Google Scholar
  11. 11.
    Ma, T., Tan, T., Wang, Y., Zhang, D.: Personal identification based on iris texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1519–1533 (2003)Google Scholar
  12. 12.
    Zhu, Y., Tan, T., Wang, Y.: Biometric personal identification based on iris patterns. In: Proceedings of the 15th International Conference on Pattern Recognition, pp. 1–4 (2000)Google Scholar
  13. 13.
    Sanderson, S., Erbetta, J.: Authentication for secure environments based on IRIS scanning technology. In: IEEE Colloquium on Visual Biometrics (2000)Google Scholar
  14. 14.
    Ghali, A., Jamel, S., Pindar, Z., Disina, A., Deris, M.: Reducing error rates for iris image using higher contrast in normalization process. IOP Conf. Ser. Mater. Sci. Eng. 266 (2017)Google Scholar
  15. 15.
    Ahmad, S.A., Taib, M.N., Elaiza, N., Khalid, A., Taib, H.: An analysis of image enhancement techniques for dental X-ray image interpretation. Int. J. Mach. Learn. Comput. 2(3), 292–297 (2012)Google Scholar
  16. 16.
    Santhi, K., Banu, R.W.: Adaptive contrast enhancement using modified histogram equalization. Optik-Int. J. Light Electron Opt. 126(19), 1809–1814 (2015)CrossRefGoogle Scholar
  17. 17.
    Das, A.: Image enhancement in spatial domain. In: Guide to Signals and Patterns in Image Processing (2015)Google Scholar
  18. 18.
    Maini, R., Aggarwal, H.: A comprehensive review of image enhancement techniques. J. Comput. 2(3), 8–13 (2010)Google Scholar
  19. 19.
    Gonzalez, R.C., Woods, R.E.: Histogram equalization. Digital Image Processing, pp. 1–3 (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Abdulrahman Aminu Ghali
    • 1
  • Sapiee Jamel
    • 1
  • Kamaruddin Malik Mohamad
    • 1
  • Shamsul Kamal Ahmad Khalid
    • 1
  • Zahraddeen Abubakar Pindar
    • 1
  • Mustafa Mat Deris
    • 1
  1. 1.Faculty of Computer Science and Information TechnologyUniversiti Tun Hussein Onn MalaysiaBatu PahatMalaysia

Personalised recommendations