Maximum Attribute Relative Approach of Soft Set Theory in Selecting Cluster Attribute of Electronic Government Data Set

  • Deden Witarsyah Jacob
  • Iwan Tri Riyadi Yanto
  • Mohd Farhan Md Fudzee
  • Mohamad Aizi Salamat
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 700)

Abstract

Electronic government (e-government) is the use of information and communication technology to provide information and services for the citizen. Many researchers argue that it is very important to know what the dominant variable influences citizen in using e-government. A number studies have used empirical approach to know the variables, but very rarely use other technique such as data mining. One of the powerful data mining technique is Maximum Attribute Relative (MAR), the technique is based on a soft set theory by introducing the concept of the attribute relative in information systems. Therefore, we present the applicability of MAR for clustering attribute selection. The real data set is taken from a survey at Bandung District in Indonesia. A total 200 participants have jointed in this survey. Most respondents are female i.e. 105 persons and the rest are male i.e. 95 persons with alpha score yielded 0.846. At this stage of the research, we show how MAR can be used to select the best clustering and found that Facilitating Condition (FC) is the highest variable of the citizen behavior in adopting e-government service. Furthermore, the result also may potentially contribute to decision maker how to design a good e-government in order to reduce bureaucracy and further to improve public services.

Keywords

Clustering Soft set theory Maximum attribute relative (MAR) e-Government Facilitating condition Effort expectancy Performance expectancy 

References

  1. 1.
    Deden, W.: The critical factors affecting e-government adoption in Indonesia: a conceptual framework. Int. J. Adv. Sci. Eng. Inf. Technol. 7(1), 160–167 (2017)Google Scholar
  2. 2.
    Carter, L., Weerakkody, V.: E-government adoption: a cultural comparison. Inf. Syst. Front. 10(4), 473–482 (2008)CrossRefGoogle Scholar
  3. 3.
    Al-hujran, O., Al-debei, M.M., Chatfield, A., Migdadi, M.: Computers in human behavior the imperative of influencing citizen attitude toward e-government adoption and use. Comput. Human Behav. 53, 189–203 (2015)CrossRefGoogle Scholar
  4. 4.
    Heeks, R.: Most e-government-for-development projects fail: how can risks be reduced?. Institute for Development Policy and Management University of Manchester, Manchester (2003)Google Scholar
  5. 5.
    Zhao, F., José Scavarda, A., Waxin, M.-F.: Key issues and challenges in e-government development: An integrative case study of the number one eCity in the Arab world. Inf. Technol. People 25(4), 395–422 (2012).  https://doi.org/10.1108/09593841211278794 CrossRefGoogle Scholar
  6. 6.
    Parmar, D., Wu, T., Blackhurst, J.: MMR: An algorithm for clustering categorical data using rough set theory. Data Knowl. Eng. 63, 879–893 (2007)CrossRefGoogle Scholar
  7. 7.
    Wang, F.H., and Hung, S.W.: On application of rough data mining methods to automatic construction of student models. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. Lecture Notes On Artificial Intelligence, pp. 161–166. Springer-Verlag, Berlin, Heidelberg (2001)Google Scholar
  8. 8.
    Jacob, D.W., Fudzee, M.F.M., Salamat, M.A., Saedudin, R., Abdullah, Z., Herawan, T.: Mining significant association rules from on information and system quality of indonesian e-government dataset. In: Herawan, T., Ghazali, R., Nawi, N., Deris, M. (eds.) Recent Advances on Soft Computing and Data Mining SCDM 2016. Advances in Intelligent Systems and Computing, vol. 549. Springer, Cham (2017)Google Scholar
  9. 9.
    Jacob D.W., Fudzee M.F.M., Salamat M.A., Saedudin R.R., Yanto I.T.R., Herawan T.: An application of rough set theory for clustering performance expectancy of Indonesian e-government dataset. In: Herawan, T., Ghazali, R., Nawi, N., Deris, M. (eds.) Recent Advances on Soft Computing and Data Mining SCDM 2016. Advances in Intelligent Systems and Computing, vol. 549. Springer, Cham (2017)Google Scholar
  10. 10.
    Yanto, I.T.R., Vitasari, P., Herawan, T., Deris, M.M.: Applying variable precision rough set model for clustering student suffering studys anxiety. Expert Syst. Appl. 39(1), 452–459 (2012)CrossRefGoogle Scholar
  11. 11.
    Mamat, R., Herawan, T., Deris, M.M.: MAR: maximum attribute relative of soft set for clustering attribute selection. Knowl.-Based Syst. 52, 11–20 (2013)CrossRefGoogle Scholar
  12. 12.
    Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q. 27(3), 425–478 (2003)Google Scholar
  13. 13.
    Weerakkody, V., El-Haddadeh, R., et al.: Examining the influence of intermediaries in facilitating e-government adoption: An empirical investigation. Int. J. Inf. Manage. 33(5), 716–725 (2013)CrossRefGoogle Scholar
  14. 14.
    Lozanova-belcheva, E.: The Impact of Information Literacy Education for the Use of e-Government Services : e-government Services Usage—Reasons Why Citizens Are, pp. 155–161. (2013).  https://doi.org/10.1007/978-3-319-03919-0_19
  15. 15.
    Williams, M.D., Rana, N.P., Dwivedi,Y.K.: The unified theory of acceptance and use of technology (UTAUT): a literature review. J. Enterp. Inf. Manag. 28(3), 443–488 (2015)Google Scholar
  16. 16.
    Rana, N.P., Dwivedi, Y.K., Williams, M.D.: A meta-analysis of existing research on citizen adoption of e-government. Inf. Syst. Front. 17(3), 547–563 (2015).  https://doi.org/10.1007/s10796-013-9431-z CrossRefGoogle Scholar
  17. 17.
    Jacob, D.W., Md Fudzee, M.F., Salamat, M.A., Kasim, S., Mahdin, H., Ramli, A.A.: Modelling end-user of electronic-government service: the role of information quality, system quality and trust. IOP Conf. Ser. Mater. Sci. Eng. 226, 12096 (2017)CrossRefGoogle Scholar
  18. 18.
    Witarsyah, D., Fudzee, M.F., Salamat.: A conceptual study on generic end users adoption of e-government services. Int. J. Adv. Sci. Eng. Inf. Technol. 7(3), 1000–1006 (2017) [Online] Available: http://dx.doi.org/10.18517/ijaseit.7.3.1654
  19. 19.
    Athmay, A.L., Al, A.A., Fantazy, K., Kumar, V.: E-government adoption and users satisfaction: an empirical investigation. EuroMed J. Bus. 11(1), 57–83 (2016).  https://doi.org/10.1108/EMJB-05-2014-0016 CrossRefGoogle Scholar
  20. 20.
    Ghalandari, K.: The effect of performance expectancy, effort expectancy, social influence and facilitating conditions on acceptance of e-banking services in Iran: the moderating role of age and gender. Middle-East J. Sci. Res. 12(6), 801–807 (2012).  https://doi.org/10.5829/idosi.mejsr.2012.12.6.2536 Google Scholar
  21. 21.
    Tarhini, A., El-Masri, M., Ali, M., Serrano, A.: Extending the UTAUT model to understand the customers acceptance and use of internet banking in Lebanon. Inf. Technol. People 29(4), 830–849 (2016).  https://doi.org/10.1108/ITP-02-2014-0034 CrossRefGoogle Scholar
  22. 22.
    Maji, P.K., Roy, A.R.: An application of soft sets in a decision making problem. Comput. Math Appl. 44, 1077–1083 (2002)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Ma, X., Norrozila, S., Qin, H., Herawan, T., Zain, J.M.: A new efficient normal parameter reduction algorithm of soft sets. Comput. Math. Appl. 62, 588–598 (2011)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Feng, F., Jun, Y.B., Liu, X.Y., Li, L.F.: An adjustable approach to fuzzy soft set based decision making. J. Comput. Appl. Math. 234, 10–20 (2010)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Feng, F., Li, Y.M., Cagman, N.: Generalized uni-int decision making schemes based on choice value soft sets. Eur. J. Oper. Res. 220(1), 162–170 (2012)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)CrossRefMATHGoogle Scholar
  27. 27.
    Molodtsov, D.: Soft set theory—first results. Comput. Math. Appl. 37(4), 19–31 (1999)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Deden Witarsyah Jacob
    • 1
  • Iwan Tri Riyadi Yanto
    • 2
  • Mohd Farhan Md Fudzee
    • 3
  • Mohamad Aizi Salamat
    • 3
  1. 1.Department of Industrial EngineeringTelkom UniversityBandungIndonesia
  2. 2.Department of Information SystemsUniversity of Ahmad Dahlan, Kampus III UADYogyakartaIndonesia
  3. 3.Faculty of Computer Science and Information TechnologyUniversiti Tun Hussein Onn MalaysiaParit RajaMalaysia

Personalised recommendations