Instance-Based Ontology Matching: A Literature Review

  • Mansir Abubakar
  • Hazlina Hamdan
  • Norwati Mustapha
  • Teh Noranis Mohd Aris
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 700)


The volume of research articles published today associated to instance-based ontology matching is significant and it is thought to reflect the growing interest of ontology matching research community. Nonetheless, for new researchers in the field of instance-based ontology matching, this amount of information seems to be devastating. Therefore, the aim of this study is to assists researchers and practitioners to get a broad idea on the state-of-the-art instance-based ontology matching and to determine potential research directions in the areas of matching different ontologies in order to represent a single real world object. We performed an intensive literature review in the field of ontology matching, instance-based matching and Semantic Web. Our study shows that there is need for research attention on instance-based matching than usual concentration on conceptual-based matching of two or more ontologies. We also highlighted some important areas that require research attentions.


Semantic web Ontologies Ontology matching Instance-based ontology matching 


  1. 1.
    Maree, M., Belkhatir, M.: Knowledge-based systems addressing semantic heterogeneity through multiple knowledge base assisted merging of domain-specific ontologies. Knowl.-Based Syst. 73, 199–211 (2015)CrossRefGoogle Scholar
  2. 2.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5, 199–220 (1993)CrossRefGoogle Scholar
  3. 3.
    Warren, P.: Knowledge management and the Semantic Web: from scenario to technology. IEEE Intell. Syst. 21, 53–59 (2006)CrossRefGoogle Scholar
  4. 4.
    Abanda, F.H., Tah, J.H.M.: Trends in built environment Semantic Web applications: where are we today? Expert Syst. Appl. 40, 5563–5577 (2013)CrossRefGoogle Scholar
  5. 5.
    Hakimpour, F., Geppert, A.: Resolving semantic heterogeneity in schema integration. Ontol. Inf. Syst. IOS Press, 297–308 (2001)Google Scholar
  6. 6.
    Shvaiko, P.: A survey of schema-based matching approaches. J. Data Semant. 3730, 146–171 (2005)MATHGoogle Scholar
  7. 7.
    Isaac, A., van der Meij, L., Schlobach, S., Wang, S.: An empirical study of instance-based ontology matching. In: Belgian/Netherlands Conference on Artificial Intelligence, 317–318 (2008)Google Scholar
  8. 8.
    Euzenat, J., Shvaiko, J.P.: Ontology Matching, vol. 18, pp. 333. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Link, S., Nikovski, D., Esenther, A., Ye, X.: Matcher composition methods for automatic schema matching. Enterp. Inf. Syst. 141, 108–123 (2013)CrossRefGoogle Scholar
  10. 10.
    Ding, G., Dong, H., Wang, G.: Appearance-order-based schema matching. Database systems for advanced applications. Lecture Notes in Computer Science, vol. 7238, pp. 79–94. Springer, Berlin, Heidelberg (2012)Google Scholar
  11. 11.
    Sabbah, T., Selamat, A., M., Ashraf, Herawan, T.: Effect of thesaurus size on schema matching quality. Knowl.-Based Syst. 71, 211–226 (2014)Google Scholar
  12. 12.
    Suresh kumar, G., Zayaraz, G.: Concept relation extraction using Naive Bayes classifier for ontology-based question answering systems. J. King Saud Univ. Comput. Inf. Sci. 27, 13–24 (2015)Google Scholar
  13. 13.
    Castano, S., Ferrara, A., Lorusso, D., Montanelli, S.: On the ontology instance matching problem. In Proceedings of International Workshop on Database and Expert Systems Applications, DEXA, pp. 180–184 (2008)Google Scholar
  14. 14.
    Castano, S., Ferrara, A., Montanelli, S., Varese, G.: Ontology and instance matching. Lecture Notes in Computer Science (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6050, pp. 167–195 (2011)Google Scholar
  15. 15.
    Shao, C.L., Hu, M., Li, J.Z., Wang, Z.C., Chung, T., Xia, J.B.: RiMOM-IM: a novel iterative framework for instance matching. J. Comput. Sci. Technol. 31, 185–197 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Budura, A., Sebastian, M., Philippe, C.: European Semantic Web Conference (2009)Google Scholar
  17. 17.
    Decker, S., et al.: The Semantic Web—on the respective roles of XML and RDF. IEEE Internet Comput. 4, 19 (2000)CrossRefGoogle Scholar
  18. 18.
    Nacer, H., Aissani, D.: Semantic Web services: standards, applications, challenges and solutions. J. Netw. Comput. Appl. 44, 134–151 (2014)CrossRefGoogle Scholar
  19. 19.
    Akbari, I., Fathian, M.: A novel algorithm for ontology matching. J. Inf. Sci. 36, 324–334 (2010)CrossRefGoogle Scholar
  20. 20.
    Horrocks, I.: Description logic: A Formal Foundation for Ontology Languages and Tools. Methods Cell Biol. 78, 765–775 (2007)Google Scholar
  21. 21.
    Zang, B., Li, Y., Xie, W., Chen, Z., Tsai, C.F., Laing, C.: An ontological engineering approach for automating inspection and quarantine at airports. J. Comput. Syst. Sci. 74, 196–210 (2008)Google Scholar
  22. 22.
    Gu, L., Baxter, R.: Record linkage: current practice and future directions. In: 17th International Conference on Database Systems for Advanced Applications, pp. 03–83 (2003)Google Scholar
  23. 23.
    Freire, S.M., de Almeida, R.T., Cabral, M.D.B., de Assis Bastos, E., Souza, R.C., da Silva, M.G.P.: A record linkage process of a cervical cancer screening database. Comput. Methods Programs Biomed. 108, 90–101 (2012)Google Scholar
  24. 24.
    Ong, T.C., Mannino, M.V., Schilling, L.M., Kahn, M.G.: Improving record linkage performance in the presence of missing linkage data. J. Biomed. Inform. 52, 43–54 (2014)CrossRefGoogle Scholar
  25. 25.
    Goldstein, H., Harron, K.: Record linkage: a missing data problem. J. Methodol. Dev. Data Link. 109–124 (2016)Google Scholar
  26. 26.
    Liu, X., Wang, Y., Zhu, S., Lin, H.: Combating web spam through trust-distrust propagation with confidence. Pattern Recognit. Lett. 34, 1462–1469 (2013)CrossRefGoogle Scholar
  27. 27.
    Wang, X., Su, J., Wang, B., Wang, G., Leung, H.F.: Trust description and propagation system: semantics and axiomatization. Knowl.-Based Syst. 90, 81–91 (2015)CrossRefGoogle Scholar
  28. 28.
    Jiang, C., Liu, S., Lin, Z., Zhao, G., Duan, R., Liang, K.: Domain-aware trust network extraction for trust propagation in large-scale heterogeneous trust networks. Knowl.-Based Syst. 111, 237–247 (2016)Google Scholar
  29. 29.
    Wu, J., Xiong, R., Chiclana, F.: Uninorm trust propagation and aggregation methods for group decision making in social network with four tuple information. Knowl.-Based Syst. 96, 29–39 (2016)CrossRefGoogle Scholar
  30. 30.
    Xiong, F., Liu, Y., Cheng, J.: Modelling and predicting opinion formation with trust propagation in online social networks. Commun. Nonlinear Sci. Numer. Simul. 44, 513–524 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Goetz, J.N., Brenning, A., Petschko, H., Leopold, P.: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 81, 1–11 (2015)CrossRefGoogle Scholar
  32. 32.
    Zhuhadar, L.: A synergistic strategy for combining thesaurus-based and corpus-based approaches in building ontology for multilingual search engines. Comput. Hum. Behav. 51, 1107–1115 (2015)CrossRefGoogle Scholar
  33. 33.
    Kocbek, S., et al.: Text mining electronic hospital records to automatically classify admissions against disease: measuring the impact of linking data sources. J. Biomed. Inform. 64, 158–167 (2016)CrossRefGoogle Scholar
  34. 34.
    Gal, A. Roitman, H., Sagi, T.: From diversity-based prediction to better schema matching. In: International World Wide Web Conference on Communication, pp. 1145–1155 (2016)Google Scholar
  35. 35.
    Nejhadi, A.H., Shadgar, B., Osareh, A.: Ontology alignment using machine learning techniques. Int. J. Comput. Sci. Inf. Technol. 3, 139–150 (2011)Google Scholar
  36. 36.
    Aher, S.B., Lobo, L.M.R.J.: Combination of machine learning algorithms for recommendation of courses in E-Learning system based on historical data. Knowl.-Based Syst. 51, 1–14 (2013)CrossRefGoogle Scholar
  37. 37.
    Wang, S., Li, D., Petrick, N., Sahiner, B., Linguraru, M.G., Summers, R.M.: Optimizing area under the ROC curve using semi-supervised learning. Pattern Recognit. 48, 276–287 (2015)CrossRefMATHGoogle Scholar
  38. 38.
    Vock, D.M., et al.: Adapting machine learning techniques to censored time-to-event health record data: a general-purpose approach using inverse probability of censoring weighting. J. Biomed. Inform. 61, 119–131 (2016)CrossRefGoogle Scholar
  39. 39.
    Ichise, R.: Machine learning approach for ontology mapping using multiple concept similarity measures. In: Seventh IEEE/ACIS International Conference on Computer and Information Science (ICIS 2008), pp. 340–346 (2008)Google Scholar
  40. 40.
    Souza, A.H., Corona, F., Barreto, G.A., Miche, Y., Lendasse, A.: Minimal learning machine: a novel supervised distance-based approach for regression and classification. Neurocomputing 164, 34–44 (2015)Google Scholar
  41. 41.
    Cerón-Figueroa, S., et al.: Instance-based ontology matching for e-learning material using an associative pattern classifier. Comput. Hum. Behav. 69, 218–225 (2017)CrossRefGoogle Scholar
  42. 42.
    Gracia, J., Mena, E.: Semantic heterogeneity issues on the web. IEEE Internet Comput. 16, 60–67 (2012)CrossRefGoogle Scholar
  43. 43.
    Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with semantic verification. J. Web Semant. 7, 235–251 (2009)CrossRefGoogle Scholar
  44. 44.
    Sa, F.: LN2R—a knowledge based reference reconciliation system : OAEI 2010 results (2010)Google Scholar
  45. 45.
    Li, J., Wang, Z., Zhang, X., Tang, J.: Large scale instance matching via multiple indexes and candidate selection. Knowl.-Based Syst. 50, 112–120 (2013)CrossRefGoogle Scholar
  46. 46.
    Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: logic-based and scalable ontology matching. Lecture Notes in Computer Science (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7031, no.1, pp. 273–288. LNCS (2011)Google Scholar
  47. 47.
    Deb Nath, R., Seddiqui, P.H., Aono, M.: Resolving scalability issue to ontology instance matching in Semantic Web. In: Proceeding of 15th International Conference on Computer and Information Technology (ICCIT 2012), pp. 396–404 (2012)Google Scholar
  48. 48.
    Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto, F.M.: The agreementmakerlight ontology matching system. Lecture Notes in Computer Science (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8185, pp. 527–541. LNCS (2013)Google Scholar
  49. 49.
    Nguyen, K., Ichise, R.: SLINT+ results for OAEI 2013 instance matching (2013)Google Scholar
  50. 50.
    Jiang, Y., Wang, X., Zheng, H.: A semantic similarity measure based on information distance for ontology alignment. Inf. Sci. (Ny) 278, 76–87 (2014)CrossRefGoogle Scholar
  51. 51.
    Diallo, G.: An effective method of large scale ontology matching. J. Biomed. Semant. 5, 44 (2014)CrossRefGoogle Scholar
  52. 52.
    Khiat, A., Benaissa, M.: InsMT/InsMTL results for OAEI 2014 instance matching (2014)Google Scholar
  53. 53.
    Khiat, A., Benaissa, M.: InsMT+ results for OAEI 2015 instance matching, no. 1 (2015)Google Scholar
  54. 54.
    Khiat, A., Benaissa, M., Belfedhal, A.: STRIM results for OAEI 2015 instance matching evaluation. Ontology alignment evaluation initiative (2015).
  55. 55.
    Sai Baba, R. M., Meenachi, M. N., Balasubramanian P.: Instance Based Matching System for Nuclear Ontologies. 4(1), 10–13 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mansir Abubakar
    • 1
  • Hazlina Hamdan
    • 1
  • Norwati Mustapha
    • 1
  • Teh Noranis Mohd Aris
    • 1
  1. 1.Faculty of Computer Science and Information TechnologyUniversity Putra MalaysiaSeri KembanganMalaysia

Personalised recommendations