Exploration and Exploitation Measurement in Swarm-Based Metaheuristic Algorithms: An Empirical Analysis

  • Mohd Najib Mohd Salleh
  • Kashif Hussain
  • Shi Cheng
  • Yuhui Shi
  • Arshad Muhammad
  • Ghufran Ullah
  • Rashid Naseem
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 700)

Abstract

Swarm-based metaheuristics, inspired from intelligent social behaviors in nature, have achieved wider acceptance among researchers as compared to other population-based methods. The success of any swarm-based algorithm highly depends upon the mechanism of social interaction which maintains the balance between exploration and exploitation. This research examines these two significant cornerstones of top five swarm-based metaheuristics using diversity measurement. The results show that ACO and FA maintained balance between exploration and exploitation throughout iterations thus achieved better results as compared to counterparts taken in this study.

Keywords

Swarm intelligence Metaheuristics Optimization Exploration and exploitation 

Notes

Acknowledgements

The authors would like to thank Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia for supporting this research under Postgraduate Incentive Research Grant, Vote No.U560.

References

  1. 1.
    Zheng, Yu-Jun, Chen, Sheng-Yong, Ling, Hai-Feng: Evolutionary optimization for disaster relief operations: a survey. Appl. Soft Comput. 27, 553–566 (2015)CrossRefGoogle Scholar
  2. 2.
    Hidalgo, I.G., de Barros, R.S., Fernandes, J., Estrócio, J.P., Correia, P.B.: Metaheuristic approaches for hydropower system scheduling. J. Appl. Math. 2015 (2015)Google Scholar
  3. 3.
    Duarte, A., Martí, R., Álvarez, A., Ángel-Bello, F.: Metaheuristics for the linear ordering problem with cumulative costs. Eur. J. Oper. Res. 216(2), 270–277 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Yang, X.-S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu, M.: Swarm Intelligence and Bio-Inspired Computation:Theory and Applications. Newnes (2013)Google Scholar
  5. 5.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)Google Scholar
  6. 6.
    Kennedy, J., Eberhart, R.: Particle swarm optimization (pso). In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948. Perth, Australia (1995)Google Scholar
  7. 7.
    Tereshko, V., Loengarov, A.: Collective decision making in honey-bee foraging dynamics. Comput. Inf. Syst. 9(3), 1 (2005)Google Scholar
  8. 8.
    Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Evolutionary Computation, CEC 99. Proceedings of the 1999 Congress on, vol. 2, pp. 1470–1477. IEEE (1999)Google Scholar
  9. 9.
    Yang, X.-S., Deb, S.: Cuckoo search via lévy flights. In: Nature & Biologically Inspired Computing, 2009. NaBIC World Congress on, pp. 210–214. IEEE (2009)Google Scholar
  10. 10.
    Yang, X.-S.: Engineering Optimization. Firefly algorithm, pp. 221–230 (2010)Google Scholar
  11. 11.
    Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. Advances in Swarm Intelligence, pp. 355–364 (2010)Google Scholar
  12. 12.
    Yang, X.-S.: A new metaheuristic bat-inspired algorithm. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74 (2010)Google Scholar
  13. 13.
    Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. -Aided Design 43(3), 303–315 (2011)CrossRefGoogle Scholar
  14. 14.
    Simon, Dan: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)CrossRefGoogle Scholar
  15. 15.
    Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. 22(3), 52–67 (2002)CrossRefGoogle Scholar
  16. 16.
    Sorensen, K., Sevaux, M., Glover, F.: A History of Metaheuristics (2017). arXiv:1704.00853, arXiv preprint
  17. 17.
    Yang, X.-S.: Nature-inspired mateheuristic algorithms: Success and new challenges (2012). arXiv:1211.6658, arXiv preprint
  18. 18.
    Cheng, S., Shi, Y., Qin, Q., Zhang, Q., Bai, R.: Population diversity maintenance in brain storm optimization algorithm. J. Artif Intell. Soft Comput. Res. 4(2), 83–97 (2014)Google Scholar
  19. 19.
    Leguizamón, G., Coello Coello, C.A.: An alternative \({{\rm ACO}_{\mathbb{R}}}\) algorithm for continuous optimization problems. In: ANTS Conference, pp. 48–59. Springer (2010)Google Scholar
  20. 20.
    Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)MATHGoogle Scholar
  21. 21.
    Jr, I.F., Yang, X.-S., Fister, I., Brest, J., Fister, D.: A brief review of nature-inspired algorithms for optimization (2013). arXiv:1307.4186, arXiv preprint
  22. 22.
    Zhan, Z.-H., Zhang, J., Shi, Y.-H., Liu, H.-L.: A modified brain storm optimization. In: Evolutionary Computation (CEC), IEEE Congress on, pp. 1–8. IEEE (2012)Google Scholar
  23. 23.
    Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math Comput. 214(1), 108–132 (2009)MathSciNetMATHGoogle Scholar
  24. 24.
    Nawi, N.M., Rehman, M.Z., Khan, A., Chiroma, H., Herawan, T.: A modified bat algorithm based on gaussian distribution for solving optimization problem. J. Comput. Theor. Nanosci. 13(1), 706–714 (2016)CrossRefGoogle Scholar
  25. 25.
    Zhang, L., Liu, L., Yang, X.-S., Dai, Y.: A novel hybrid firefly algorithm for global optimization. PloS one 11(9), e0163230 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mohd Najib Mohd Salleh
    • 1
  • Kashif Hussain
    • 1
  • Shi Cheng
    • 2
  • Yuhui Shi
    • 3
  • Arshad Muhammad
    • 4
  • Ghufran Ullah
    • 5
  • Rashid Naseem
    • 5
  1. 1.Faculty of Computer Science and Information TechnologyUniversiti Tun Hussein Onn MalaysiaBatu PahatMalaysia
  2. 2.School of Computer ScienceShaanxi Normal UniversityXianChina
  3. 3.Department of Computer Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
  4. 4.Faculty of Computing and Information TechnologySohar UniversitySoharOman
  5. 5.Department of Computer ScienceCity University of Science and Information TechnologyPeshawarPakistan

Personalised recommendations