A Regulative Norms Mining Algorithm for Complex Adaptive System

  • Moamin A. Mahmoud
  • Mohd Sharifuddin Ahmad
  • Mohd Zaliman M. Yusoff
  • Salama A. Mostafa
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 700)


In complex adaptive system, a visitor agent is not usually and explicitly given the norms of its host agent. Thus, when it is not able to adapt the host agent’s norms, it is totally deprived of accessing resources and services from the host. Such circumstance severely affects its performance resulting in failure to achieve its goal. Consequently, this paper attempts to resolve the problem by enabling the agent to identify the host’s regulative norms via an algorithm called the Regulative Norms Mining Algorithm (RNMA). Regulative norms constitute the recommendation, obligation, and prohibition norms, which the RNMA identifies by analyzing exceptional events that trigger rewards or penalties. In this paper, we argue that existing norms identifications algorithms are inadequate to detect different regulative norm types. Consequently, we propose the RNMA algorithm, which could alleviate the problem. We demonstrate the merit of the algorithm by apply it on a typical scenario.


Social norms Normative systems Regulative norms Norm mining 


  1. 1.
    Caire, P.: A normative multi-agent systems approach to the use of conviviality for digital cities. In: Proceedings of the International Conference on Coordination, Organizations, Institutions, and Norms in Agent Systems III, COIN’07, pp. 245–260 (2007)Google Scholar
  2. 2.
    Boella, G., Torre, L.V.D.: Regulative and constitutive norms in normative multi-agent systems. In: Proceedings of the 9th International Conference on the Principles of Knowledge Representation and Reasoning, Whistler (CA), pp. 255–26 (2004)Google Scholar
  3. 3.
    Boella, G., Torre, L.V.D.: Substantive and procedural norms in normative multiagent systems. J. Appl. Log. 6(2), 152–171 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    López, F., Luck, M., d’Inverno, M.: A normative framework for agent-based systems. Comput. Math. Organ. Theory 12(2), 227–250 (2006)Google Scholar
  5. 5.
    Rubino, R., Omicini, A., Denti, E.: Computational institutions for modelling norm-regulated MAS: an approach based on coordination artifacts. In: Proceedings of AAMAS Workshops, pp. 127–141 (2005)Google Scholar
  6. 6.
    Mahmoud, M.A., Ahmad, M.S., Mohd Yusoff, M.Z., Mustapha, A.: A review of norms and normative multiagent systems. Sci. World J. 2014 (2014)Google Scholar
  7. 7.
    Peczenik, A.: On Law and Reason. Springer (2009)Google Scholar
  8. 8.
    Chan, S.: Complex adaptive systems. In: ESD, 83 Research Seminar in Engineering Systems, vol. 31 (2001)Google Scholar
  9. 9.
    Savarimuthu, B.T.R., Cranefield, S., Purvis, M., Purvis, M.: Obligation norm identification in agent societies. J. Artif. Soc. Soc. Simul. 13(4) (2010)Google Scholar
  10. 10.
    Mahmoud, M.A., Ahmad, M.S., Ahmad, A., Yusoff, M.Z.M., Mustapha, A.: Norms detection and assimilation in multi-agent systems: a conceptual approach. In: Knowledge Technology, pp. 226–233. Springer, Berlin, Heidelberg (2012)Google Scholar
  11. 11.
    Epstein, J.: Learning to be thoughtless: social norms and individual computation. Comput. Econ. 18(1), 9–24 (2001)CrossRefMATHGoogle Scholar
  12. 12.
    López, López: Social Powers and Norms: Impact on Agent Behaviour. Ph.D. thesis, Department of Electronics and Computer Science, University of Southampton, United Kingdom (2003)Google Scholar
  13. 13.
    Andrighetto, G., Campenni, M., Cecconi, F., Conte, R.: The complex loop of norm emergence: a simulation model. In: Chen, S.-H., Cioffi-Revilla, C., Gilbert, N., Kita, H., Terano, T., Takadama, K., Cioffi-Revilla, C., Deffuant, G. (eds.) Simulating Interacting Agents and Social Phenomena, volume 7 of Agent-Based Social Systems, pp. 19–35. Springer (2010)Google Scholar
  14. 14.
    Mahmoud, M.A., Ahmad, M.S., Zaliman, M.Y.M.: Development and implementation of a technique for norms-adaptable agents in open multi-agent communities. J. Syst. Sci. Complex. 29(6), 1519–1537 (2016)CrossRefMATHGoogle Scholar
  15. 15.
    Mahmoud, M.A., Ahmad, M.S., Yusoff, M.Z.M.: A norm assimilation approach for multi-agent systems in heterogeneous communities. In: Asian Conference on Intelligent Information and Database Systems, pp. 354–363. Springer, Berlin, Heidelberg (2016)Google Scholar
  16. 16.
    Andrighetto, G., Conte, R., Turrini, P., Paolucci, M.: Emergence in the loop: simulating the two way dynamics of norm innovation. In: Normative Multi-agent Systems, in Dagstuhl Seminar Proceedings. Internationales Begegnungs-und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2007)Google Scholar
  17. 17.
    Campos, J., López-Sánchez, M., Esteva, M.: A case-based reasoning approach for norm adaptation. In: 5th International Conference on Hybrid Artificial Intelligence Systems (HAIS’10), pp. 168–176. Springer, Spain (2010)Google Scholar
  18. 18.
    Savarimuthu, B.T.R., Cranefield, S., Purvis, M., Purvis, M.: Norm Identification in Multi-agent Societies. Discussion Paper, Department of Information Science, University of Otago (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Moamin A. Mahmoud
    • 1
    • 2
  • Mohd Sharifuddin Ahmad
    • 1
    • 2
  • Mohd Zaliman M. Yusoff
    • 1
    • 2
  • Salama A. Mostafa
    • 2
    • 3
  1. 1.College of Computer Science and Information TechnologyUniversiti Tenaga NasionalKajangMalaysia
  2. 2.Business Development UnitTNB Integrated Learning Solution Sdn. Bhd. (ILSAS)KajangMalaysia
  3. 3.Faculty of Computer Science and Information TechnologyUTHMParit RajaMalaysia

Personalised recommendations