Advertisement

Relationship Between Angiotensin Converting Enzyme Gene and Cardiac Autonomic Neuropathy Among Australian Population

  • Ahmad Shaker Abdalrada
  • Jemal H. Abawajy
  • Morshed U. Chowdhury
  • Sutharshan Rajasegarar
  • Tahsien Al-Quraishi
  • Herbert F. Jelinek
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 700)

Abstract

Angiotensin Converting Enzyme (ACE) gene considers a risk factor for many pathologies such as hypertensive, and diabetic nephropathy. The objective of this study was to investigate the role of ACE genotype with Cardiovascular Autonomic Neuropathy (CAN). We used a data set for 299 participants with and without CAN, as well as with different ACE genotype. Various statistical tests have been considered. Logistic regression was applied to demonstrate the size effect of each predictor. The results revealed, there was no significant different between ACE genotype in the patients with and without CAN. Logistic regression demonstrated only Ewing battery tests as an effective predictive factors. Our investigation found ACE genotype was not a risk factor in Cardiovascular Autonomic Neuropathy in the population of our study.

Keywords

Angiotensin Converting Enzyme (ACE) gene Cardiovascular Autonomic Neuropathy (CAN) Logistic regression 

References

  1. 1.
    Vinik, A.I., Maser, R.E., Mitchell, B.D., and Freeman, R.: Diabetic autonomic neuropathy. Diabetes Care 26(5), 1553–1579 (2003)Google Scholar
  2. 2.
    Maser, R.E., Mitchell, B.D., Vinik, A.I., Freeman, R.: The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes. Diabetes Care 26(6), 1895–1901 (2003)CrossRefGoogle Scholar
  3. 3.
    Maser, R.E., Lenhard, J.M., DeCherney, S.G.: Cardiovascular autonomic neuropathy: the clinical significance of its determination. Endocrinologist 10(1), 27–33 (2000)Google Scholar
  4. 4.
    Vinik, A.I., Ziegler, D.: Diabetic cardiovascular autonomic neuropathy. Circulation 115(3), 387–397 (2007)CrossRefGoogle Scholar
  5. 5.
    Schumer, M.P., Joyner, S.A., Pfeifer, M.A.: Cardiovascular autonomic neuropathy testing in patients with diabetes. Diabetes Spectr. 11(4), 227 (1998)Google Scholar
  6. 6.
    Hazari, M.A., Khan, R.T., Reddy, B.R., Hassan, M.A.: Cardiovascular autonomic dysfunction in type 2 diabetes mellitus and essential hypertension in a South Indian population. Neurosciences (Riyadh) 17(2), 173–175 (2012)Google Scholar
  7. 7.
    International Diabetes Federation: IDF Diabetes Atlas [Internet]. 6th ed. (2013). Available from: http://www.idf.org/diabetesatlas
  8. 8.
    Ewing, D., Campbell, I., Clarke, B.: The natural history of diabetic autonomic neuropathy. QJM 49(1), 95–108 (1980)Google Scholar
  9. 9.
    Ewing, D.J., Martyn, C.N., Young, R.J., Clarke, B.F.: The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care 8(5), 491–498 (1985)CrossRefGoogle Scholar
  10. 10.
    Tesfaye, Solomon, Boulton, A.J.M., Dyck, P.J., Freeman, R., Horowitz, M., Kempler, P., Lauria, G., et al.: Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33(10), 2285–2293 (2010)Google Scholar
  11. 11.
    Stranieri, A., Abawajy, J., Kelarev, A., Huda, S., Chowdhury, M., Jelinek, H.F.: An approach for ewing test selection to support the clinical assessment of cardiac autonomic neuropathy. Artif. Intell. Med. 58(3), 185–193 (2013)CrossRefGoogle Scholar
  12. 12.
    Ewing, D., Campbell, I., Murray, A., Neilson, J., Clarke, B.: Immediate heart-rate response to standing: simple test for autonomic neuropathy in diabetes. Br. Med. J. 1(6106), 145–147 (1978)CrossRefGoogle Scholar
  13. 13.
    Giebisch, G., Windhager, E.: Integration of Salt and Water Balance. Medical Physiology, pp. 861–876. Saunders, New York (2003)Google Scholar
  14. 14.
    Crisan, D., Carr, J.: Angiotensin I-converting enzyme: genotype and disease associations. J. Mol. Diagn.: JMD 2(3), 105 (2000)CrossRefGoogle Scholar
  15. 15.
    Dhar, S., Ray, S., Dutta, A., Sengupta, B., Chakrabarti, S.: Polymorphism of ACE gene as the genetic predisposition of coronary artery disease in Eastern India. Indian Heart J. 64(6), 576–581 (2012)CrossRefGoogle Scholar
  16. 16.
    Tiret, L., Blanc, H., Ruidavets, J.-B., Arveiler, D., Luc, G., Jeunemaitre, X., Tichet, J., Mallet, C., Poirier, O., Plouin, P.-F.: Gene polymorphisms of the reninangiotensin system in relation to hypertension and parental history of myocardial infarction and stroke: the PEGASE study. J. Hypertens. 16(1), 37–44 (1998)CrossRefGoogle Scholar
  17. 17.
    Witzel, I.-I., Jelinek, H.F., Khalaf, K., Lee, S., Khandoker, A.H., Alsafar, H.: Front. Endocrinol. 6 (2015)Google Scholar
  18. 18.
    Zhou, Y.-F., Yan, H., Hou, X.-P., Miao, J.-L., Zhang, J., Yin, Q.-X., Li, J.-J., Zhang, X.-Y., Li, Y.-Y., Luo, H.-L.: Association study of angiotensin converting enzyme gene polymorphism with elderly diabetic hypertension and lipids levels. Lipids Health Dis. 12(1), 187 (2013)CrossRefGoogle Scholar
  19. 19.
    Cho, B.H., Yu, H., Kim, K.-W., Kim, T.H., Kim, I.Y., Kim, S.I.: Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artif. Intell. Med. 42(1), 37–53 (2008)CrossRefGoogle Scholar
  20. 20.
    Simon, A.C., Holleman, F., Gude, W.T., Hoekstra, J.B., Peute, L.W., Jaspers, M.W., Peek, N.: Safety and usability evaluation of a web-based insulin self-titration system for patients with type 2 diabetes mellitus. Artif. Intell. Med. 59(1), 23–31 (2013)CrossRefGoogle Scholar
  21. 21.
    Wang, F., Fang, Q., Yu, N., Zhao, D., Zhang, Y., Wang, J., Wang, Q., Zhou, X., Cao, X., Fan, X.: Association between genetic polymorphism of the angiotensin-converting enzyme and diabetic nephropathy: a meta-analysis comprising 26,580 subjects. J. Renin-Angiotensin-Aldosterone Syst. 13(1), 161–174 (2012)CrossRefGoogle Scholar
  22. 22.
    Bhaskar, L.V., Mahin, S., Ginila, R.T., Soundararajan, P.: Role of the ACE ID and PPARG P12A polymorphisms in genetic susceptibility of diabetic nephropathy in a South Indian population. Nephro-Urol. Mon. 5(3), 813 (2013)CrossRefGoogle Scholar
  23. 23.
    Jayapalan, J.J., Muniandy, S., Chan, S.P.: Null association between ACE gene I/D polymorphism and diabetic nephropathy among multiethnic Malaysian subjects. Indian J. Hum. Genet. 16(2), 78 (2010)CrossRefGoogle Scholar
  24. 24.
    Elhawary, N.A., Bogari, N., Rashad, M., Tayeb, M.T.: Null genetic risk of ACE gene polymorphisms with nephropathy in type 1 diabetes among Egyptian population. Egypt. J. Med. Hum. Genet. 12(2), 187–192 (2011)CrossRefGoogle Scholar
  25. 25.
    Marzbanrad, F., Hambly, B., Ng, E., Tamayo, M., Matthews, S., Karmakar, C., Khandoker, A.H., Palaniswami, M., Jelinek, H.F.: Relationship between Heart Rate Variability and angiotensinogen gene polymorphism in diabetic and control individuals. In: 36th Annual International Conference of the IEEE. Engineering in Medicine and Biology Society (EMBC), IEEE, pp. 6683–6686, (2014)Google Scholar
  26. 26.
    Moianu, A., Blaa, R., Voidzan, S., Bajk, Z.: Cardiovascular autonomic neuropathy in context of other complications of type 2 diabetes mellitus. BioMed Res. Int. 2013 (2013)Google Scholar
  27. 27.
    Gupta, S., Agrawal, B.K., Goel, R.K., Sehajpal, P.K.: Angiotensin-converting enzyme gene polymorphism in hypertensive rural population of Haryana, India. J. Emerg. Trauma Shock 2(3), 150 (2009)CrossRefGoogle Scholar
  28. 28.
    Jelinek, H.F., Wilding, C., Tinely, P.: An innovative multi-disciplinary diabetes complications screening program in a rural community: a description and preliminary results of the screening. Aust. J. Prim. Health 12(1), 14–20 (2006)CrossRefGoogle Scholar
  29. 29.
    Cornforth, D., Jelinek, H.: Automated classification reveals morphological factors associated with dementia. Appl. Soft Comput. 8(1), 182–190 (2008)CrossRefGoogle Scholar
  30. 30.
    Purnamasari, D., Widjojo, B.D., Antono, D., Syampurnawati, M.: ACE gene polymorphism and atherosclerotic lesion of carotid artery among offsprings of type 2 diabetes mellitus. Diabetes 17, 18 (2012)Google Scholar
  31. 31.
    Moreira, S., Nbrega, O., Santana, H., Sales, M., Farinatti, P., Simes, H.: Impact of ACE I/D gene polymorphism on blood pressure, heart rate variability and nitric oxide responses to the aerobic exercise in hypertensive elderly. Revista Andaluza de Medicina del Deporte (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ahmad Shaker Abdalrada
    • 1
  • Jemal H. Abawajy
    • 1
  • Morshed U. Chowdhury
    • 1
  • Sutharshan Rajasegarar
    • 1
  • Tahsien Al-Quraishi
    • 1
  • Herbert F. Jelinek
    • 2
  1. 1.Deakin UniversityBurwoodAustralia
  2. 2.Charles Sturt UniversityAlburyAustralia

Personalised recommendations