A Percentile Transition Ranking Algorithm Applied to Binarization of Continuous Swarm Intelligence Metaheuristics

  • José García
  • Broderick Crawford
  • Ricardo Soto
  • Gino Astorga
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 700)


The binarization of continuous swarm-intelligence metaheuristics is an area of great interest in operational research. This interest is mainly due to the application of binarized metaheuristics to combinatorial problems. In this article we propose a general binarization algorithm called Percentil Transition Ranking Algorithm (PTRA). PTRA uses the percentile concept as a binarization mechanism. In particular we apply this mechanism to the Cuckoo Search metaheuristic to solve the Set Covering Problem (SCP). We provide necessary experiments to investigate the role of key ingredients of the algorithm. Finally to demonstrate the efficiency of our proposal, Set Covering benchmark instances of the literature show that PTRA competes with the state-of-the-art algorithms.


Combinatorial optimization Set covering problem Binary metaheuristics Percentile ranking 


  1. 1.
    Balas, E., Carrera, M.C.: A dynamic subgradient-based branch-and-bound procedure for set covering. Oper. Res. 44(6), 875–890 (1996)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Brusco, M.J., Jacobs, L.W., Thompson, G.M.: A morphing procedure to supplement a simulated annealing heuristic for cost-andcoverage-correlated set-covering problems. Ann. Oper. Res. 86, 611–627 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Oper. Res. 47(5), 730–743 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., Paredes, F.: Putting continuous metaheuristics to work in binary search spaces. Complexity 2017 (2017)Google Scholar
  5. 5.
    Crawford, B., Soto, R., Monfroy, E., Astorga, G., García, J., Cortes, E.: A meta-optimization approach for covering problems in facility location. In: Workshop on Engineering Applications, pp. 565–578. Springer, Berlin (2017)Google Scholar
  6. 6.
    Crawford, B., Soto, R., Peña, C., Palma, W., Johnson, F., Paredes, F.: Solving the set covering problem with a shuffled frog leaping algorithm. Intelligent Information and Database Systems, pp. 41–50. Springer, Berlin (2015)Google Scholar
  7. 7.
    García, J., Crawford, B., Soto, R., Carlos, C., Paredes, F.: A k-means binarization framework applied to multidimensional knapsack problem. Appl. Intell. 1–24 (2017)Google Scholar
  8. 8.
    García, J., Crawford, B., Soto, R., García, P.: A multi dynamic binary black hole algorithm applied to set covering problem. In: International Conference on Harmony Search Algorithm, pp. 42–51. Springer, Berlin (2017)Google Scholar
  9. 9.
    García, J., Pope, C., Altimiras, F.: A distributed k-means segmentation algorithm applied to lobesia botrana recognition. Complexity 2017 (2017)Google Scholar
  10. 10.
    Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness (1979)Google Scholar
  11. 11.
    Graells-Garrido, E., García, J.: Visual exploration of urban dynamics using mobile data. In: International Conference on Ubiquitous Computing and Ambient Intelligence, pp. 480–491. Springer, Berlin (2015)Google Scholar
  12. 12.
    Horváth, M., Kis, T.: Computing strong lower and upper bounds for the integrated multiple-depot vehicle and crew scheduling problem with branch-and-price. Cent. Eur. J. Oper. Res. 1–29 (2017)Google Scholar
  13. 13.
    John, B.: A lagrangian heuristic for set-covering problems. Nav. Res. Logist. (NRL) 37(1), 151–164 (1990)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kasirzadeh, A., Saddoune, M., Soumis, F.: Airline crew scheduling: models, algorithms, and data sets. EURO J. Transp. Logist. 6(2), 111–137 (2017)CrossRefGoogle Scholar
  15. 15.
    Kennedy, J.: Particle swarm optimization. Encyclopedia of Machine Learning, pp. 760–766. Springer, Berlin (2011)Google Scholar
  16. 16.
    Lanza-Gutierrez, J.M., Crawford, B., Soto, R., Berrios, N., Gomez-Pulido, J.A., Paredes, F.: Analyzing the effects of binarization techniques when solving the set covering problem through swarm optimization. Expert Syst. Appl. 70, 67–82 (2017)CrossRefGoogle Scholar
  17. 17.
    Leonard, B.J., Engelbrecht, A.P., Cleghorn, C.W.: Critical considerations on angle modulated particle swarm optimisers. Swarm Intell. 9(4), 291–314 (2015)CrossRefGoogle Scholar
  18. 18.
    Lu, Y., Vasko, F.J.: An or practitioner’s solution approach for the set covering problem. Int. J. Appl. Metaheuristic Comput. (IJAMC) 6(4), 1–13 (2015)CrossRefGoogle Scholar
  19. 19.
    Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)CrossRefMATHGoogle Scholar
  20. 20.
    Soto, R., Crawford, B., Olivares, R., Barraza, J., Johnson, F., Paredes, F.: A binary cuckoo search algorithm for solving the set covering problem. Bioinspired Computation in Artificial Systems, pp. 88–97. Springer, Berlin (2015)CrossRefGoogle Scholar
  21. 21.
    Stojković, M.: The operational flight and multi-crew scheduling problem. Yugoslav J. Oper. Res. 15(1) (2016)Google Scholar
  22. 22.
    Totonchi, A., Reza, M.: Magnetic optimization algorithms, a new synthesis. In: IEEE International Conference on Evolutionary Computations (2008)Google Scholar
  23. 23.
    Valenzuela, C., Crawford, B., Soto, R., Monfroy, E., Paredes, F.: A 2-level metaheuristic for the set covering problem. Int. J. Comput. Commun. Control 7(2), 377–387 (2014)CrossRefGoogle Scholar
  24. 24.
    Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)CrossRefGoogle Scholar
  25. 25.
    Yang, X.-S., Deb, S.: Cuckoo search via lévy flights. In: World Congress on Nature and Biologically Inspired Computing, 2009, NaBIC 2009, pp. 210–214. IEEE (2009)Google Scholar
  26. 26.
    Yelbay, B., Birbil, Ş.İ., Bülbül, K.: The set covering problem revisited: an empirical study of the value of dual information. Eur. J. Oper. Res. (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • José García
    • 1
    • 2
  • Broderick Crawford
    • 2
  • Ricardo Soto
    • 2
  • Gino Astorga
    • 2
    • 3
  1. 1.Telefónica Investigación y DesarrolloSantiagoChile
  2. 2.Pontificia Universidad Católica de ValparaísoValparaísoChile
  3. 3.Universidad de ValparaísoValparaísoChile

Personalised recommendations