Skip to main content
  • 1160 Accesses

Abstract

Computation has long been the deriving force in the development of both mathematics and cryptography, modern computation theory is however rooted in Turing’s 1936 paper on Computable Numbers, where a universal computing model, now called Turing machine is proposed.

It is possible to invent a single machine which can be used to compute any computable sequence.

Those who can imagine anything, can create the impossible.

Alan Turing (1912–1954)

Father of Modern Computer Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hilbert space is defined to be a complete inner-product space. The set of all sequences x = (x 1, x 2, ⋯ ) of complex numbers (where \(\sum _{i=1}^{\infty } |x_i|{ }^2\) is finite) is a good example of a Hilbert space, where the sum x + y is defined as (x 1 + y 1, x 2 + y 2, ⋯ ), the product ax as (ax 1, ax 2, ⋯ ), and the inner product as \((x,y)= \sum _{i=1}^{\infty } \overline {x}_i y_i\), where \(\overline {x}_i\) is the complex conjugate of x i, x = (x 1, x 2, ⋯ ) and y = (y 1, y 2, ⋯ ). In modern quantum mechanics all possible physical states of a system are considered to correspond to space vectors in a Hilbert space.

References

  1. L. M. Adleman, J. DeMarrais and M-D. A. Huang, “Quantum Computability”, SIAM Journal on Computing, 26, 5(1996), pp 1524–1540.

    Article  MathSciNet  Google Scholar 

  2. P. Benioff, “The Computer as a Physical System – A Microscopic Quantum Mechanical Hamiltonian Model of Computers as Represented by Turing Machines”, Journal of Statistical Physics, 22, 5(1980), pp 563–591.

    Article  MathSciNet  Google Scholar 

  3. C. H. Bennett, “Strengths and Weakness of Quantum Computing”, SIAM Journal on Computing, 26, 5(1997), pp 1510–1523.

    Article  MathSciNet  Google Scholar 

  4. C. H. Bennett and D. P. DiVincenzo, “Quantum Information and Computation”, Nature, 404, 6775(2000), pp 247–255.

    Article  Google Scholar 

  5. E. Bernstein and U. Vazirani, “Quantum Complexity Theory”, SIAM Journal on Computing, 26, 5(1997), pp 1411–1473.

    Article  MathSciNet  Google Scholar 

  6. I. L Change, R. Laflamme, P, Shor, and W. H. Zurek, “Quantum Computers, Factoring, and Decoherence, Science, 270, 5242(1995), pp 1633–1635.

    Google Scholar 

  7. A. Church, “An Unsolved Problem of Elementary Number Theory” The American Journal of Mathematics, 58, 2(1936), pp 345–363.

    Article  MathSciNet  Google Scholar 

  8. A. Church, “Book Review: On Computable Numbers, with an Application to the Entscheidungsproblem by Turing”, Journal of Symbolic Logic, 2, 1(1937), pp 42–43.

    Google Scholar 

  9. H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics 138, Springer, 1993.

    Google Scholar 

  10. S. Cook, The Complexity of Theorem-Proving Procedures, Proceedings of the 3rd Annual ACM Symposium on the Theory of Computing, New York, 1971, pp 151–158.

    Google Scholar 

  11. S. Cook, “The Importance of the P versus NP Question”, Journal of ACM, 50, 1(2003), pp 27–29.

    Article  MathSciNet  Google Scholar 

  12. S. Cook, The P versus NP Problem, In: J. Carlson, A. Jaffe and A. Wiles, Editors, The Millennium Prize Problems, Clay Mathematics Institute and American Mathematical Society, 2006, pp 87–104.

    Google Scholar 

  13. T. H. Cormen, C. E. Ceiserson and R. L. Rivest, Introduction to Algorithms, 3rd Edition, MIT Press, 2009.

    Google Scholar 

  14. R. Crandall and C. Pomerance, Prime Numbers – A Computational Perspective, 2nd Edition, Springer, 2005.

    Google Scholar 

  15. D. Deutsch, “Quantum Theory, the Church–Turing Principle and the Universal Quantum Computer”, Proceedings of the Royal Society of London, Series A, 400, 1818(1985), pp 96–117.

    Article  MathSciNet  Google Scholar 

  16. R. P. Feynman, “Simulating Physics with Computers”, International Journal of Theoretical Physics, 21, 6(1982), 467–488.

    Article  MathSciNet  Google Scholar 

  17. R. P. Feynman, Feynman Lectures on Computation, Edited by A. J. G. Hey and R. W. Allen, Addison-Wesley, 1996.

    Google Scholar 

  18. M. R. Garey and D. S. Johnson, Computers and Intractability – A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, 1979.

    Google Scholar 

  19. O. Goldreich, Foundations of Cryptography: Basic Tools, Cambridge University Press, 2001.

    Google Scholar 

  20. O. Goldreich, Foundations of Cryptography: Basic Applications, Cambridge University Press, 2004.

    Google Scholar 

  21. O. Goldreich, P, NP, and NP-Completeness, Cambridge University Press, 2010.

    Google Scholar 

  22. J. Grustka, Quantum Computing, McGraw-Hill, 1999.

    Google Scholar 

  23. M. Hirvensalo, Quantum Computing, 2nd Edition, Springer, 2004.

    Google Scholar 

  24. J. Hopcroft, R. Motwani and J. Ullman, Introduction to Automata Theory, Languages, and Computation, 3rd Edition, Addison-Wesley, 2007.

    Google Scholar 

  25. R. Karp, “Reducibility among Cominatorial Problems”, Complexity of Computer Computations, Edited by R. E. Miller and J. W. Thatcher, Plenum Press, New York, 1972, pp 85–103.

    Book  Google Scholar 

  26. D. E. Knuth, The Art of Computer Programming II – Seminumerical Algorithms, 3rd Edition, Addison-Wesley, 1998.

    Google Scholar 

  27. M. Le Bellac, A Short Introduction to Quantum Information and Quantum Computation, Cambridge University Press, 2005.

    Google Scholar 

  28. H. R. Lewis and C. H. Papadimitrou, Elements of the Theory of Computation, Prentice-Hall, 1998.

    Google Scholar 

  29. P. Linz, An Introduction to Formal Languages and Automata, 5th Edition, Jones and Bartlett Publishers, 2011.

    Google Scholar 

  30. Y. V. Matiyasevich, Hilbert’s Tenth Problem, MIT Press, 1993.

    Google Scholar 

  31. N. D. Mermin, Quantum Computer Science, Cambridge University Press, 2007.

    Google Scholar 

  32. M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Information, 10th Anniversary Edition, Cambridge University Press, 2010.

    Google Scholar 

  33. C. H. Papadimitrou, Computational Complexity, Addison Wesley, 1994.

    Google Scholar 

  34. E. Rieffel and W. Polak, Quantum Computing: A Gentle Introduction, MIT Press, 2011.

    Google Scholar 

  35. H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser, Boston, 1990.

    MATH  Google Scholar 

  36. P. Shor, “Algorithms for Quantum Computation: Discrete Logarithms and Factoring”, Proceedings of 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, 1994, pp 124–134.

    Google Scholar 

  37. P. Shor, “Polynomial-Tme Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer”, SIAM Journal on Computing, 26, 5(1997), pp 1411–1473.

    Article  MathSciNet  Google Scholar 

  38. P. Shor, “Quantum Computing”, Documenta Mathematica, Extra Volume ICM 1998, I, pp 467–486.

    Google Scholar 

  39. P. Shor, “Introduction to Quantum Algorithms”, AMS Proceedings of Symposium in Applied Mathematics, 58, 2002, pp 143–159.

    Article  MathSciNet  Google Scholar 

  40. P. Shor, “Why Haven’t More Quantum Algorithms Been Found?”, Journal of the ACM, 50, 1(2003), pp 87–90.

    Article  MathSciNet  Google Scholar 

  41. D. R. Simon, “On the Power of Quantum Computation”, Proceedings of the 35 Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, 1994, pp 116–123.

    Google Scholar 

  42. D. R. Simon, “On the Power of Quantum Computation”, SIAM Journal on Computing, 25, 5(1997), pp 1474–1483.

    Article  MathSciNet  Google Scholar 

  43. M. Sipser, Introduction to the Theory of Computation, 2nd Edition, Thomson, 2006.

    Google Scholar 

  44. W. Trappe and L. Washington, Introduction to Cryptography with Coding Theory, 2nd Edition, Prentice-Hall, 2006.

    Google Scholar 

  45. A. Turing, “On Computable Numbers, with an Application to the Entscheidungsproblem”, Proceedings of the London Mathematical Society, S2-42, 1(1937), pp 230–265.

    Google Scholar 

  46. C. P. Williams and S. H. Clearwater, Explorations in Quantum Computation, The Electronic Library of Science, Springer, 1998.

    Google Scholar 

  47. U. V. Vazirani, “On the Power of Quantum Computation”, Philosophical Transactions of the Royal Society London, A356, 1743(1998), pp 1759–1768.

    Google Scholar 

  48. U. V. Vazirani, “Fourier Transforms and Quantum Computation”, Proceedings of Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 2292, Springer, 2000, pp 208–220.

    Google Scholar 

  49. U. V. Vazirani, “A Survey of Quantum Complexity Theory”, AMS Proceedings of Symposium in Applied Mathematics, 58, 2002, pp 193–220.

    Article  MathSciNet  Google Scholar 

  50. J. Watrous, “Quantum Computational Complexity”, . Encyclopedia of Complexity and System Science, Springer, 2009, pp 7174–7201.

    Google Scholar 

  51. C. P. Williams, Explorations in Quantum Computation, 2nd Edition, Springer, 2011.

    Google Scholar 

  52. N. S. Yanofsky and M. A. Mannucci, Quantum Computing for Computer Scientists, Cambridge University Press, 2008.

    Google Scholar 

  53. A. Yao, “Classical Physics and the Church Turing Thesis”, Journal of ACM, 50, 1(2003), pp 100–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, S.Y. (2019). Computational Preliminaries. In: Cybercryptography: Applicable Cryptography for Cyberspace Security. Springer, Cham. https://doi.org/10.1007/978-3-319-72536-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72536-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72534-5

  • Online ISBN: 978-3-319-72536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics