Advertisement

Topological Invariants

  • Gary Webb
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 946)

Abstract

In this chapter we discuss topological invariants of MHD and gas dynamics. Topological invariants and integrals of differential forms over a volume V that are non-zero are sometimes referred to as topological charges. A more complete discussion is given by Tur and Yanovsky (J. Fluid Mech. 248:67–106, 1993). Topological fluid dynamics and invariants are discussed in more detail in Arnold (Sel. Math. Sov. 5(4):326–345, 1986), Arnold and Khesin (Topological Methods in Hydrodynamics, 1998), Berger and Field (J. Fluid. Mech. 147:133–148, 1984), and in many other works. Tur and Yanovsky (Coherent Vortex Structures in Fluids and Plasmas, 2017) present examples of vortices in two fluid plasmas with nontrivial topology in which the streamlines and magnetic field lines are linked. They also discuss MHD topological solitons.

References

  1. Aldinger, J., Klapper, I., Tabor, M.: Formulae for the Calculations and Estimation of Writhe. J. Knot Theory Ramif. 4, 343–372 (1995)Google Scholar
  2. Arnold, V.I.: The Asymptotic Hopf Invariant and Its Applications. Translated by R.P. Boas, English Translation in Sel. Math. Sov. 5(4), 326–345 (1974/1986)Google Scholar
  3. Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics. Springer, New York (1998)Google Scholar
  4. Arrayaás, M., Bouwmeester, D., Trueba, J.L.: Knots in Electromagnetism. Phys. Rep. 667, 1–16 (2017)Google Scholar
  5. Balogh, A., Lanzerotti, L.J., Suess, S.T. (eds.): The Heliosphere Through the Solar Activity Cycle. Springer-Praxis Publishing/Praxis Publishing Ltd., New York/Chichester (2008)Google Scholar
  6. Barnes, A.: On the Non-existence of Plane Polarized, Large Amplitude Alfvén Waves. J. Geophys. Res. Space Phys. 81, 281 (1976)Google Scholar
  7. Barnes, A.: Interplanetary Alfvénic Fluctuations: A Stochastic Model. J. Geophys. Res. 86(A9), 7498–7506 (1981)Google Scholar
  8. Berger, M.A.: Topological Invariants Rooted in Planes. Geophys. Astrophys. Fluid Dyn. 34, 265–281 (1986)Google Scholar
  9. Berger, M.A.: Introduction to Magnetic Helicity. Plasma Phys. Controlled Fusion 41, B167–B175 (1999b). https://doi.org/10.1088/0741-3335/41/12B/312
  10. Berger, M.A., Field, G.B.: The Topological Properties of Magnetic Helicity. J. Fluid. Mech. 147, 133–148 (1984)Google Scholar
  11. Berger, M.A., Prior, C.: The Writhe of Open and Closed Curves. J. Phys. A Math. Gen. 39, 8321–8348 (2006)Google Scholar
  12. Berger, M.A., Ruzmaikin, A.: Rate of Helicity Production by Solar Rotation. J. Geophys. Res. 105(A5), 10481–10490 (2000)Google Scholar
  13. Bieber, J.W., Evenson, P.A., Matthaeus, W.H.: Magnetic Helicity of the Parker Field. Astrophys. J. 315, 700 (1987)Google Scholar
  14. Bila, N.: Symmetries of PDEs Systems in Solar Physics and Contact Geometry (1999). arXiv:math-ph/9910042v1Google Scholar
  15. Boillat, G.: Simple Waves in N-Dimensional Propagation. J. Math. Phys. 11, 1482–1483 (1970)Google Scholar
  16. Bruno, R., Carbone, V.: The Solar Wind as a Turbulence Laboratory. Living Reviews in Solar Physics (2005). Available online at http:/www.livingreviews.org/lrsp-2005-4Google Scholar
  17. Bruno, R., Carbone, V., Veltri, P., Pieropaolo, E., Bavasonno, B.: Identifying Intermittency Effects in the Solar Wind. Planet. Space Sci. 49, 1201 (2001)Google Scholar
  18. Calugareanu, G.: L’integral de Gauss et l’analyse des Noeds Tridimensionels. Rev. Math. Pure Appl. 4, 5–20 (1959)Google Scholar
  19. Campbell, J., Berger, M.A.: Helicity, Linking, and Writhe in a Spherical Geometry. J. Phys. C (Conference Series) 544, 012001 (p. 9) (2014)Google Scholar
  20. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press/Clarendon Press, Oxford (1961)Google Scholar
  21. Chanteeur, G.: Localized Alfvénic Solutions of Nondissipative and Compressible MHD. Nonlinear Process. Geophys. 6, 145–148 (1999)Google Scholar
  22. Dewar, R.L., Yoshida, Z., Bhattacharjee, A., Hudson, S.R.: Variational Formulation of Relaxed and Multi-Region Relaxed Magnetohydrodynamics. J. Plasma Phys. 81, 515810604 (2015)Google Scholar
  23. Dewar, R.L., Hudson, S.R., Bhattacharjee, A., Yoshida, Z.: Multi-Region Relaxed Magnetohydrodynamics in Plasmas with Slowly Changing Boundaries-Resonant Response of a Plasma Slab. Phys. Plasmas 24, 042507 (2017)Google Scholar
  24. Finn, J.H., Antonsen, T.M.: Magnetic Helicity: What Is it and What Is it Good for? Comments Plasma Phys. Contr. Fusion 9(3), 111 (1985)Google Scholar
  25. Finn, J.M., Antonsen, T.M.: Magnetic Helicity Injection for Configurations with Field Errors. Phys. Fluids 31(10), 3012–3017 (1988)Google Scholar
  26. Gilbert, N.D., Porter, T.: Knots and Surfaces. Oxford University Press, Oxford/New York (1994)Google Scholar
  27. Gleeson, L.J., Webb, G.M.: The Propagation of Cosmic Rays in the Interplanetary Region (the Theory). Fund. Cosmic Phys. 6, 187–312 (1980)Google Scholar
  28. Gosling, J.T., McComas, D.J., Roberts, D.A., Skoug, R.M.: A One Sided Aspect of Alfvénic Fluctuations in the Solar Wind. Astrophys. J. 695, L213–L216 (2009)Google Scholar
  29. Harrison, B.K., Estabrook, F.B.: Geometric Approach to Invariance Groups and Solution of Partial Differential Systems. J. Math. Phys. 12, 653–666 (1971)Google Scholar
  30. Jokipii, J.R., Thomas, B.T.: Effects of Drift on the Transport of Cosmic Rays IV: Modulation by a Wavy Interplanetary Current Sheet. Astrophys. J. 243, 1115–1122 (1981)Google Scholar
  31. Kamchatnov, I.V.: Topological Soliton in Magnetohydrodynamics. Sov. Phys. 55(1), 69–73 (1982)Google Scholar
  32. Kauffman, L.H.: On Knots. Annals of Mathematics Studies 115. Princeton University Press, Princeton (1987)Google Scholar
  33. Kruskal, M.D., Kulsrud, R.M.: Equilibrium of a Magnetically Confined Plasma in a Toroid. Phys. Fluids 1, 265 (1958)Google Scholar
  34. Low, B.C.: Magnetohydrodynamic Processes in the Solar Corona: Flares, Coronal Mass Ejections, and Magnetic Helicity. Phys. Plasmas 1, 1684 (1994)Google Scholar
  35. Low, B.C.: Magnetic Helicity in a Two-Flux Partitioning of an Ideal Hydromagnetic Fluid. Astrophys. J. 646, 1288–1302 (2006)Google Scholar
  36. Low, B.C.: Field Topologies in Ideal and Near-Ideal Magnetohydrodynamics and Vortex Dynamics. Sci. China Phys. Mech. Astron. 58(1), 015201 (2015)Google Scholar
  37. Marsch, E., Mülhauser, K.H., Schwenn, R., Rosenbauer, H., Pilip, W., Neubauer, F.M.: Solar Wind Protons: Three Dimensional Velocity Distributions and Derived Plasma Parameters Measured Between 0.3 and 1 AU. J. Geophys. Res. 81(A1), 52–72 (1982)Google Scholar
  38. Matteini, L., Horbury, T.S., Pantellini, F., Velli, M., Schwartz, S.J.: Ion Kinetic Energy Conservation and Magnetic Field Strength Constancy in Multi-Fluid Solar Wind and Alfvénic Turbulence. Astrophys. J. 802(11), 4 pp. (2015)Google Scholar
  39. Moffatt, H.K.: The Degree of Knottedness of Tangled Vortex Lines. J. Fluid. Mech. 35, 117 (1969)Google Scholar
  40. Moffatt, H.K., Ricca, R.L.: Helicity and the Calugareanu Invariant. Proc. R. Soc. Lond. Ser. A 439, 411 (1992)Google Scholar
  41. Nicole, D.A.: Solitons with Non-vanishing Hopf Index. J. Phys. G Nucl. Phys. 4(9), 1363–1369 (1978)Google Scholar
  42. Parker, E.N.: Dynamics of the Interplanetary Gas and Magnetic Field. Astrophys. J. 128, 664–676 (1958)Google Scholar
  43. Parker, E.N.: Interplanetary Dynamical Processes. Interscience, New York (1963)Google Scholar
  44. Parker, E.N.: Cosmic Magnetic Fields. Oxford University Press, New York (1979)Google Scholar
  45. Parker, E.N.: Spontaneous Current Sheets in Magnetic Fields. Oxford University Press, New York (1994)Google Scholar
  46. Roberts, D.A., Goldstein, M.L.: The variance of solar wind magnetic fluctuations: solutions and further puzzles. AGU Fall Meeting Abstract SH14A-03 (2006)Google Scholar
  47. Rust, D.: Spawning and Shedding of Magnetic Fields in the Solar Corona. Geophys. Res. Lett. 21, 241 (1994)Google Scholar
  48. Ruzmaikin, A., Akhmetiev, P.: Topological Invariants of Magnetic Fields, and the Effect of Reconnections. Phys. Plasmas 1(2), 331–336 (1994)Google Scholar
  49. Sagdeev, R.Z., Moiseev, S.S., Tur, A.V., Yanovsky, V.: Problems of the Theory of Strong Turbulence and Topological Solitons. In: Sagdeev, R.Z. (ed.) Nonlinear Phenomena in Plasma Physics and Hydrodynamics, pp. 137–182. Mir, Moscow (1986)Google Scholar
  50. Semenov, V.S., Korvinski, D.B., Biernat, H.K.: Euler Potentials for the MHD Kamchatnov-Hopf Soliton Solution. Nonlinear Process. Geophys. 9, 347–354 (2002)Google Scholar
  51. Sneddon, I.N.: Elements of Partial Differential Equations, International Student Edition. McGraw Hill, New York (1957)Google Scholar
  52. Summners, D.W.: Knot theory and DNA. In: Summners, D.W. (ed.) New Scientific Applications of Geometry and Topology. Proceedings of Symposia in Applied Mathematics, vol. 45. American Mathematical Society, Providence (1992)Google Scholar
  53. Taylor, J.B.: Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields. Phys. Rev. Lett. 33, 1139–1141 (1974)Google Scholar
  54. Taylor, J.B.: Relaxation and Magnetic Reconnection in Plasmas. Rev. Mod. Phys. 58, 741–763 (1986)Google Scholar
  55. Thompson, A., Sweargin, J., Wickes, A., Bouwmeester, D.: Constructing a Class of Topological Solitons in Magnetohydrodynamics. Phys. Rev. E 89, 043104 (2014)Google Scholar
  56. Tsinganos, K.C.: Magnetohydrodynamic Equilibrium I. Exact Solutions of the Equations. Astrophys. J. 245, 764–782 (1981)Google Scholar
  57. Tur, A.V., Yanovsky, V.V.: Invariants in Dissipationless Hydrodynamic Media. J. Fluid Mech. 248, 67–106 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. Tur, A., Yanovsky, V.: Coherent Vortex Structures in Fluids and Plasmas. Springer Series in Synergetics. Springer, New York (2017)CrossRefzbMATHGoogle Scholar
  59. Urbantke, H.K.: The Hopf Fibration-Seven Times in Physics. J. Geom. Phys. 46(2), 125–150 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. Webb, G.M., Anco, S.C.: On Magnetohydrodynamic Gauge Field Theory. J. Phys. A Math. Theor. 50, 255501, 34 pp. (2017)Google Scholar
  61. Webb, G.M., Hu, Q., Dasgupta, B., Zank, G.P.: Homotopy Formulas for the Magnetic Vector Potential and Magnetic Helicity: The Parker Spiral Interplanetary Magnetic Field and Magnetic Flux Ropes. J. Geophys. Res. (Space Phys.) 115, A10112 (2010a). https://doi.org/10.1029/2010JA015513. Corrections: J. Geophys. Res. 116, A11102 (2011). https://doi.org/10.1029/2011JA017286
  62. Webb, G.M., Hu, Q., Dasgupta, B., Roberts, D.A., Zank, G.P.: Alfven Simple Waves: Euler Potentials and Magnetic Helicity. Astrophys. J. 725, 2128–2151 (2010b). https://doi.org/10.1088/0004-637X/725/2/2128 ADSCrossRefGoogle Scholar
  63. Webb, G.M., Zank, G.P., Burrows, R.H., Ratkiewicz, R.E.: Simple Alfven Waves. J. Plasma Phys. 77(Part 1), 51–93 (2011). https://doi.org/10.101/S00233377809990596
  64. Yahalom, A.: Aharonov-Bohm Effects in Magnetohydrodynamics. Phys. Lett. A 377, 1898–1904 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. Yahalom, A.: Simplified Variational Principles for Non-barotropic Magnetohydrodynamics. J. Plasma Phys. 82(2), 15 pp. (2016a). Article ID. 905820204Google Scholar
  66. Yahalom, A.: Non-barotropic Magnetohydrodynamics as a Five Function Field Theory. Int. J. Geom. Methods Mod. Phys. 13(10) (2016b). ID. 1650130-139Google Scholar
  67. Yahalom, A.: A Conserved Cross Helicity for Non-barotropic MHD. Geophys. Astrophys. Fluid Dyn. 111(2), 131–137 (2017a). Preprint. arXiv:1605.02537v1Google Scholar
  68. Yahalom, A.: Non Barotropic Cross Helicity Conservation and the Aharonov-Bohm Effect in Magnetohydrodynamics. Fluid Dyn. Res. (2017b). https://doi.org/10.1088/1873-7005/aa6fc7Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gary Webb
    • 1
  1. 1.CSPARThe University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations