Advected Invariants

  • Gary Webb
Part of the Lecture Notes in Physics book series (LNP, volume 946)


Tur and Janovsky (1993) developed a formalism for Lie dragging of geometrical objects G (tensors, p-forms and vectors) that are advected with the flow in ideal gas dynamics and MHD. The basic requirement for G to be advected or Lie dragged with the flow u is that


  1. Balsara, D., Kim, J.S.: An Intercomparison Between Divergence Cleaning and Staggered Mesh Formulations for Numerical Magnetohydrodynamics. Astrophys. J. 602, 1079–1090 (2004)ADSCrossRefGoogle Scholar
  2. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Springer, New York (1982)CrossRefzbMATHGoogle Scholar
  3. Dedner, A., Kemm, F., Kröner, D., Munz, C., Schnitzer, T., Wesenberg, M.: Hyperbolic Divergence Cleaning for the MHD Equations. J. Comput. Phys. 175, 645–673 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. Evans, C.R., Hawley, J.F.: Simulation of Magnetohydrodynamic Flows: A Constrained Transport Method. Astrophys. J. 332, 659–677 (1988)ADSCrossRefGoogle Scholar
  5. Fecko, M.: Differential Geometry and Lie Groups for Physicists. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  6. Flanders, H.: Differential Forms with Applications to the Physical Sciences. Academic, New York (1963)zbMATHGoogle Scholar
  7. Frankel, T.: The Geometry of Physics, An Introduction. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  8. Gordin, V.A., Petviashvili, V.I.: Equation of Continuity for the Helicity in Media with an Infinite Conductivity. J. Exp. Theor. Phys. Lett. 45(5), 266–267 (1987)Google Scholar
  9. Gordin, V.A., Petviashvili, V.I.: Lyapunov Instability of MHD Equilibrium of a Plasma with Nonvanishing Pressure. Sov. Phys. J. Exp. Theor. Phys. 68(5), 988–994 (1989)Google Scholar
  10. Harrison, B.K., Estabrook, F.B.: Geometric Approach to Invariance Groups and Solution of Partial Differential Systems. J. Math. Phys. 12, 653–666 (1971)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. Hollmann, G.H.: Arch. Met. Geofys. Bioklimatol. A14, 1 (1964)Google Scholar
  12. Holm, D.D.: Geometric Mechanics, Part I: Dynamics and Symmetry. Imperial College Press, London (2008a). Distributed by World ScientificGoogle Scholar
  13. Holm, D.D.: Geometric Mechanics, Part II: Rotating, Translating and Rolling. Imperial College Press, London (2008b). Distributed by World ScientificGoogle Scholar
  14. Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler-Lagrange Equations and Semi-products with Application to Continuum Theories. Adv. Math. 137, 1–81 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Janhunen, P.: A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods. J. Comput. Phys. 160, 649–661 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. Kamchatnov, I.V.: Topological Soliton in Magnetohydrodynamics. Sov. Phys. 55(1), 69–73 (1982)MathSciNetGoogle Scholar
  17. Kats, A.V.: Variational Principle in Canonical Variables, Weber Transformation and Complete Set of Local Integrals of Motion for Dissipation-Free Magnetohydrodynamics. J. Exp. Theor. Phys. Lett. 77(12), 657–661 (2003)Google Scholar
  18. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, New York (1994)CrossRefzbMATHGoogle Scholar
  19. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman, San Francisco (1973)Google Scholar
  20. Newcomb, W.A.: Lagrangian and Hamiltonian Methods in Magnetohydrodynamics. Nucl. Fusion Suppl. (Part 2), 451–463 (1962)Google Scholar
  21. Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., De Zeeuw, D.: A Solution Adaptive Upwind Scheme for Ideal Magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. Schutz, B.: Geometrical Methods in Mathematical Physics. Cambridge University Press, Cambridge (1980)CrossRefzbMATHGoogle Scholar
  23. Semenov, V.S., Korvinski, D.B., Biernat, H.K.: Euler Potentials for the MHD Kamchatnov-Hopf Soliton Solution. Nonlinear Process. Geophys. 9, 347–354 (2002)ADSCrossRefGoogle Scholar
  24. Tur, A.V., Yanovsky, V.V.: Invariants in Dissipationless Hydrodynamic Media. J. Fluid Mech. 248, 67–106 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. Volkov, D.V., Tur, A.V., Janovsky, V.V.: Hidden Supersymmetry of Classical Systems (Hydrodynamics and Conservation Laws). Phys. Lett. A 203, 357–361 (1995)ADSCrossRefGoogle Scholar
  26. Webb, G.M., Pogorelov, N.V., Zank, G.P.: MHD Simple Waves and the Divergence Wave. In: Twelfth International Solar Wind Conference, St. Malo. AIP Conference Proceedings 1216, pp. 300–303 (2009). ADSGoogle Scholar
  27. Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian Formalism for Nonlinear Waves. Phys. Uspekhi 40(11), 1087–1116 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gary Webb
    • 1
  1. 1.CSPARThe University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations