Advertisement

Helicity in Fluids and MHD

  • Gary Webb
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 946)

Abstract

In this chapter we provide an overview of helicity and vorticity conservation laws in ideal fluid dynamics and MHD. For ideal barotropic fluids, in fluid mechanics, we derive the helicity conservation law for the helicity density h f  = u ⋅ω, where ω = ∇×u is the fluid vorticity. The integral \(H_f=\int _{V_m} h_f \ d^3x\) over a volume V m moving with the fluid, is the fluid helicity. It is important in the description of the linkage of the vorticity streamlines (e.g. Moffatt (1969), Arnold and Khesin (1998)). In MHD, the integral \(H_M=\int _{V_m} \mathbf {A}\cdot \mathbf {B}\ d^3x\) is the magnetic helicity, where B = ∇×A is the magnetic induction and A is the magnetic vector potential. It is referred to as the Chern Simons term in field theory (the Chern Simons term in Yang-Mills theory has a totally different form). It describes the linkage and self linkage of the magnetic field lines (Woltjer (1958), Berger and Field (1984)). The cross helicity \(H_C=\int _{V_m} \mathbf {u}\cdot \mathbf {B}\ d^3x\) describes the linkage of the magnetic field flux tubes and the vorticity flux tubes. For the case of a barotropic gas with p = p(ρ), H C is conserved following the flow, i.e. dH C /dt = 0. For non-barotopic flows, a modifled form of the cross helicity, H CNB is conserved following the flow. We derive topological invariants (topological charges) by determining invariants which are Lie dragged with the flow in Chapter  6 (e.g. Moiseev et al. (1982), Tur and Yanovsky (1993), Webb et al. (2014a)).

References

  1. Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics. Springer, New York (1998)zbMATHGoogle Scholar
  2. Berger, M.A.: An Energy Formula for Nonlinear Force Free Magnetic Fields. Astron. Astrophys. 201, 355–361 (1988)ADSMathSciNetzbMATHGoogle Scholar
  3. Berger, M.A.: Third Order Braid Invariants. J. Phys. A 24, 4027–4036 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. Berger, M.A., Field, G.B.: The Topological Properties of Magnetic Helicity. J. Fluid. Mech. 147, 133–148 (1984)ADSMathSciNetCrossRefGoogle Scholar
  5. Berger, M.A., Ruzmaikin, A.: Rate of Helicity Production by Solar Rotation. J. Geophys. Res. 105(A5), 10481–10490 (2000)ADSCrossRefGoogle Scholar
  6. Bieber, J.W., Evenson, P.A., Matthaeus, W.H.: Magnetic Helicity of the Parker Field. Astrophys. J. 315, 700 (1987)ADSCrossRefGoogle Scholar
  7. Boyd, T.J.M., Sanderson, J.J.: In: Jeffrey, A. (ed.) Plasma Dynamics. Applications of Mathematics Series. Barnes and Noble, New York (1969)Google Scholar
  8. Cary, J.R., Littlejohn, R.G.: Noncanonical Hamiltonian Mechanics and Its Application to Magnetic Field Line Flow. Ann. Phys. 151, 1–34 (1983)ADSMathSciNetCrossRefGoogle Scholar
  9. Cheviakov, A.F.: Conservation Properties and Potential Systems of Vorticity-Type Equations. J. Math. Phys. 55, 033508 (16 pp.) (2014) (0022-2488/2014/55(3)/033508/16)Google Scholar
  10. Elsässer, W.M.: Hydrodynamic Dynamo Theory. Rev. Mod. Phys. 28, 135 (1956)CrossRefGoogle Scholar
  11. Finn, J.H., Antonsen, T.M.: Magnetic Helicity: What Is it and What Is it Good for? Comments Plasma Phys. Contr. Fusion 9(3), 111 (1985)Google Scholar
  12. Finn, J.M., Antonsen, T.M.: Magnetic Helicity Injection for Configurations with Field Errors. Phys. Fluids 31(10), 3012–3017 (1988)ADSCrossRefzbMATHGoogle Scholar
  13. Holm, D.D.: Geometric Mechanics, Part I: Dynamics and Symmetry. Imperial College Press, London (2008a). Distributed by World ScientificGoogle Scholar
  14. Holm, D.D., Kupershmidt, B.A.: Poisson Brackets and Clebsch Representations for Magnetohydrodynamics, Multi-Fluid Plasmas and Elasticity. Phys. D 6D, 347–363 (1983a)zbMATHGoogle Scholar
  15. Holm, D.D., Kupershmidt, B.A.: Noncanonical Hamiltonian Formulation of Ideal Magnetohydrodynamics. Physica D 7D, 330–333 (1983b)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. Hydon, P.E., Mansfield, E.L.: Extensions of Noether’s Second Theorem: From Continuous to Discrete Systems. Proc. R. Soc. A 467, 3206–3221 (2011). https://doi.org/10.1098/rspa.2011.0158Google Scholar
  17. Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975)zbMATHGoogle Scholar
  18. Kats, A.V.: Variational Principle in Canonical Variables, Weber Transformation and Complete Set of Local Integrals of Motion for Dissipation-Free Magnetohydrodynamics. J. Exp. Theor. Phys. Lett. 77(12), 657–661 (2003)Google Scholar
  19. Longcope, D.W., Malanushenko, A.: Defining and Calculating Self-helicity in Coronal Magnetic Fields. Astrophys. J. 674, 1130–1143 (2008)ADSCrossRefGoogle Scholar
  20. Low, B.C.: Magnetic Helicity in a Two-Flux Partitioning of an Ideal Hydromagnetic Fluid. Astrophys. J. 646, 1288–1302 (2006)ADSCrossRefGoogle Scholar
  21. Matthaeus, W.H., Goldstein, M.L.: Measurement of the Rugged Invariants of Magnetohydrodynamic Turbulence in the Solar Wind. J. Geophys. Res. 87(A8), 6011–6028 (1982)ADSCrossRefGoogle Scholar
  22. Moffatt, H.K.: The Degree of Knottedness of Tangled Vortex Lines. J. Fluid. Mech. 35, 117 (1969)ADSCrossRefzbMATHGoogle Scholar
  23. Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, Cambridge (1978)Google Scholar
  24. Moffatt, H.K., Ricca, R.L.: Helicity and the Calugareanu Invariant. Proc. R. Soc. Lond. Ser. A 439, 411 (1992)ADSCrossRefzbMATHGoogle Scholar
  25. Moiseev, S.S., Sagdeev, R.Z., Tur, A.V., Yanovskii, V.V.: On the Freezing-in Integrals and Lagrange Invariants in Hydrodynamic Models. Sov. Phys. J. Exp. Theor. Phys. 56(1), 117–123 (1982)MathSciNetGoogle Scholar
  26. Morrison, P.J.: Magnetic Field Lines, Hamiltonian Dynamics and Nontwist Systems. Phys. Plasmas 7(6), 2279–2289 (2000)CrossRefGoogle Scholar
  27. Padhye, N.S., Morrison, P.J.: Fluid Relabeling Symmetry. Phys. Lett. A 219, 287–292 (1996a)Google Scholar
  28. Padhye, N.S., Morrison, P.J.: Relabeling Symmetries in Hydrodynamics and Magnetohydrodynamics. Plasma Phys. Rep. 22, 869–877 (1996b)ADSGoogle Scholar
  29. Parker, E.N.: Cosmic Magnetic Fields. Oxford University Press, New York (1979)Google Scholar
  30. Prior, C., Yeates, A.R.: On the Helicity of Open Magnetic Fields. Astrophys. J. 787(100), 13 pp. (2014)Google Scholar
  31. Rosner, R., Low, B.C., Tsinganos, K., Berger, M.A.: On the Relationship Between the Topology of Magnetic Field Lines and Flux Surfaces. Geophys. Astrophys. Fluid Dyn. 48, 251–271 (1989)ADSCrossRefzbMATHGoogle Scholar
  32. Tur, A.V., Yanovsky, V.V.: Invariants in Dissipationless Hydrodynamic Media. J. Fluid Mech. 248, 67–106 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. Webb, G.M.: Multi-Symplectic, Lagrangian, One-Dimensional Gas Dynamics. J. Math. Phys. 56, 053101 (20 pp.) (2015). Also available at http://arxiv.org/abs/1408.4028v4
  34. Webb, G.M., Anco, S.C.: On Magnetohydrodynamic Gauge Field Theory. J. Phys. A Math. Theor. 50, 255501, 34 pp. (2017)Google Scholar
  35. Webb, G.M., Mace, R.L.: Potential Vorticity in Magnetohydrodynamics. J. Plasma Phys. 81, p. 18, 905810115 (2015). https://doi.org/10.1017/S0022377814000658. Preprint: http://arxiv/org/abs/1403.3133
  36. Webb, G.M., Hu, Q., Dasgupta, B., Zank, G.P.: Homotopy Formulas for the Magnetic Vector Potential and Magnetic Helicity: The Parker Spiral Interplanetary Magnetic Field and Magnetic Flux Ropes. J. Geophys. Res. (Space Phys.) 115, A10112 (2010a). https://doi.org/10.1029/2010JA015513. Corrections: J. Geophys. Res. 116, A11102 (2011). https://doi.org/10.1029/2011JA017286
  37. Webb, G.M., Dasgupta, B., McKenzie, J.F., Hu, Q., Zank, G.P.: Local and Nonlocal Advected Invariants and Helicities in Magnetohydrodynamics and Gas Dynamics I: Lie Dragging Approach. J. Phys. A. Math. Theor. 47, 095501 (33 pp.) (2014a). https://doi.org/10.1088/1751-8113/49/9/095501. Preprint available at http://arxiv.org/abs/1307.1105
  38. Webb, G.M., Dasgupta, B., McKenzie, J.F., Hu, Q., Zank, G.P.: Local and Nonlocal Advected Invariants and Helicities in Magnetohydrodynamics and Gas Dynamics II: Noether’s Theorems and Casimirs. J. Phys. A. Math. Theor. 47, 095502 (31 pp.) (2014b). https://doi.org/10.1088/1751-8113/47/9/095502. Preprint available at http://arxiv.org/abs/1307.1038
  39. Woltjer, L.: A Theorem on Force-Free Magnetic Fields. Proc. Natl. Acad. Sci. 44, 489 (1958)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. Yahalom, A.: Aharonov-Bohm Effects in Magnetohydrodynamics. Phys. Lett. A 377, 1898–1904 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. Yahalom, A.: Simplified Variational Principles for Non-barotropic Magnetohydrodynamics. J. Plasma Phys. 82(2), 15 pp. (2016a). Article ID. 905820204Google Scholar
  42. Yahalom, A.: A Conserved Cross Helicity for Non-barotropic MHD. Geophys. Astrophys. Fluid Dyn. 111(2), 131–137 (2017a). Preprint. arXiv:1605.02537v1Google Scholar
  43. Yahalom, A.: Non Barotropic Cross Helicity Conservation and the Aharonov-Bohm Effect in Magnetohydrodynamics. Fluid Dyn. Res. (2017b). https://doi.org/10.1088/1873-7005/aa6fc7
  44. Yeates, A.R., Hornig, G.: Unique Topological Characterization of Braided Magnetic Fields. Phys. Plasmas 20, 012102 (5 pp.) (2013)Google Scholar
  45. Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian Formalism for Nonlinear Waves. Phys. Uspekhi 40(11), 1087–1116 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gary Webb
    • 1
  1. 1.CSPARThe University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations