Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 946))

  • 1500 Accesses

Abstract

The magnetohydrodynamic equations are:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anco, S.C., Bluman, G.: Direct Construction of Conservation Laws from Field Equations. Phys. Rev. Lett. 78(15), 2869–2873 (1997)

    Google Scholar 

  • Berger, M.A., Prior, C.: The Writhe of Open and Closed Curves. J. Phys. A Math. Gen. 39, 8321–8348 (2006)

    Google Scholar 

  • Bieber, J.W., Evenson, P.A., Matthaeus, W.H.: Magnetic Helicity of the Parker Field. Astrophys. J. 315, 700 (1987)

    Google Scholar 

  • Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations. Applied Mathematical Sciences Series 168. Springer, New York (2010)

    Google Scholar 

  • Bruno, R., Carbone, V., Veltri, P., Pieropaolo, E., Bavasonno, B.: Identifying Intermittency Effects in the Solar Wind. Planet. Space Sci. 49, 1201 (2001)

    Article  ADS  Google Scholar 

  • Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press/Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

  • Chandre, C., Morrison, P.J., Tassi, E.: On the Hamiltonian Formulation of Incompressible Ideal Fluids and Magnetohydrodynamics via Dirac’s Theory of Constraints. Phys. Lett. A 376, 737–743 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gosling, J.T., McComas, D.J., Roberts, D.A., Skoug, R.M.: A One Sided Aspect of Alfvénic Fluctuations in the Solar Wind. Astrophys. J. 695, L213–L216 (2009)

    Article  ADS  Google Scholar 

  • Holm, D.D.: Geometric Mechanics, Part I: Dynamics and Symmetry. Imperial College Press, London (2008a). Distributed by World Scientific

    Google Scholar 

  • Holm, D.D.: Geometric Mechanics, Part II: Rotating, Translating and Rolling. Imperial College Press, London (2008b). Distributed by World Scientific

    Google Scholar 

  • Janhunen, P.: A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods. J. Comput. Phys. 160, 649–661 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kadomtsev, B.B., Pogutse, O.P.: Nonlinear Helical Perturbations of a Plasma in the Tokamak. J. Exp. Theor. Phys. 38, 283–290 (1974)

    ADS  Google Scholar 

  • Kamchatnov, I.V.: Topological Soliton in Magnetohydrodynamics. Sov. Phys. 55(1), 69–73 (1982)

    MathSciNet  Google Scholar 

  • Kuznetsov, E.A.: Vortex Line Representation for Hydrodynamic Type Equations. J. Nonlinear Math. Phys. 13(1), 64–80 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, E.A., Ruban, V.P.: Hamiltonian Dynamics of Vortex Lines for Systems of Hydrodynamic Type. J. Exp. Theor. Phys. Lett. 67, 1076 (1998)

    Article  Google Scholar 

  • Kuznetsov, E.A., Ruban, V.P.: Hamiltonian Dynamics of Vortex and Magnetic Field Lines in the Hydrodynamic Type Models. Phys. Rev. E 61, 831–841 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Kuznetsov, E.A., Passot, T., Sulem, P.L.: Compressible Dynamics of Magnetic Field Lines for Incompressible MHD Flows. Phys. Plasmas 11, 1410 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Low, B.C.: Three-Dimensional Structures of Magnetostatic Atmospheres. Astrophys. J. 293, 31–43 (1985)

    Article  ADS  Google Scholar 

  • Matteini, L., Horbury, T.S., Pantellini, F., Velli, M., Schwartz, S.J.: Ion Kinetic Energy Conservation and Magnetic Field Strength Constancy in Multi-Fluid Solar Wind and Alfvénic Turbulence. Astrophys. J. 802(11), 4 pp. (2015)

    Google Scholar 

  • Morrison, P.J., Greene, J.M.: Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics (Errata). Phys. Rev. Lett. 48, 569 (1982)

    Article  ADS  Google Scholar 

  • Morrison, P.J., Hazeltine, R.D.: Hamiltonian Formulation of Reduced Magnetohydrodynamics. Phys. Fluids 27(4), 886–897 (1984)

    Article  ADS  MATH  Google Scholar 

  • Newcomb, W.A.: Motion of Magnetic Lines of Force. Ann. Phys. N. Y. 3, 347 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Oughton, S., Matthaeus, W.H., Dmitruk, P.: Reduced MHD in Astrophysical Applications: Two Dimensional or Three Dimensional? Astrophys. J. 839(2), 13 pp. (2017)

    Google Scholar 

  • Panofsky, W.K.H., Phillips, M.: Classical Electricity and Electromagnetism, sect. 9.4, 2nd edn., p. 164. Wesley, Reading (1964)

    Google Scholar 

  • Parker, E.N.: Cosmic Magnetic Fields. Oxford University Press, New York (1979)

    Google Scholar 

  • Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn., p. 710. Springer, New York (1987)

    Google Scholar 

  • Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., De Zeeuw, D.: A Solution Adaptive Upwind Scheme for Ideal Magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Prim, R., Truesdell, C.: A Derivation of Zorawski’s Criterion for Permanent Vector Lines. Proc. Am. Math. Soc. 1, 32–34 (1950)

    MathSciNet  MATH  Google Scholar 

  • Pshenitsin, D.: Conservation laws of magnetohydrodynamics and their symmetry transformation properties. Ph.D. Thesis, Department of Physics, Brock University, Saint Catharines (2016). Available at https://dr.library.ca.handle/10464/9801

  • Sagdeev, R.Z., Moiseev, S.S., Tur, A.V., Yanovsky, V.: Problems of the Theory of Strong Turbulence and Topological Solitons. In: Sagdeev, R.Z. (ed.) Nonlinear Phenomena in Plasma Physics and Hydrodynamics, pp. 137–182. Mir, Moscow (1986)

    Google Scholar 

  • Semenov, V.S., Korvinski, D.B., Biernat, H.K.: Euler Potentials for the MHD Kamchatnov-Hopf Soliton Solution. Nonlinear Process. Geophys. 9, 347–354 (2002)

    Article  ADS  Google Scholar 

  • Stern, D.P.: The Motion of Magnetic Field Lines. Space Sci. Rev. 6, 143–173 (1966)

    Article  ADS  Google Scholar 

  • Strauss, H.R.: Nonlinear Three Dimensional Magnetohydrodynamics of Non-circular Tokamaks. Phys. fluids 19, 134–140 (1976)

    Article  ADS  Google Scholar 

  • Taylor, J.B.: Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields. Phys. Rev. Lett. 33, 1139–1141 (1974)

    Article  ADS  Google Scholar 

  • Taylor, J.B.: Relaxation and Magnetic Reconnection in Plasmas. Rev. Mod. Phys. 58, 741–763 (1986)

    Article  ADS  Google Scholar 

  • Thompson, A., Sweargin, J., Wickes, A., Bouwmeester, D.: Constructing a Class of Topological Solitons in Magnetohydrodynamics. Phys. Rev. E 89, 043104 (2014)

    Article  ADS  Google Scholar 

  • Torok, T., Kliem, B., Berger, M.A., Linton, M.G., Demoulin, P., Van Driel-Gesztelyi, L.: The Evolution of Writhe in Kink-Unstable Flux Ropes and Erupting Filaments. Plasma Phys. Control. Fusion 56, 064012 (7 pp.) (2014)

    Google Scholar 

  • Truesdell, C.: The Kinematics of Vorticity. Indiana University Press, Bloomington (1954)

    MATH  Google Scholar 

  • Truesdell, C., Toupin, R.A.: In: Flugge, S. (ed.) The Classical Field Theories. Handbuch der Physik III/I, pp. 226–793. Springer, Heidelberg (1960)

    Google Scholar 

  • Webb, G.M., Axford, W.I., Terasawa, T.: On the Drift Mechanism for Energetic Charged Particles at Shocks. Astrophys. J. 270, 537–553 (1983)

    Article  ADS  Google Scholar 

  • Webb, G.M., Woodward, T.I., Brio, M., Zank, G.P.: Linear Magnetosonic N-waves and Green’s Functions. J. Plasma Phys. 49(Part 3), 465–513 (1993)

    Google Scholar 

  • Webb, G.M., Pogorelov, N.V., Zank, G.P.: MHD Simple Waves and the Divergence Wave. In: Twelfth International Solar Wind Conference, St. Malo. AIP Conference Proceedings 1216, pp. 300–303 (2009). https://doi.org/10.1063/1.3396300

    ADS  Google Scholar 

  • Webb, G.M., Hu, Q., Dasgupta, B., Zank, G.P.: Homotopy Formulas for the Magnetic Vector Potential and Magnetic Helicity: The Parker Spiral Interplanetary Magnetic Field and Magnetic Flux Ropes. J. Geophys. Res. (Space Phys.) 115, A10112 (2010a). https://doi.org/10.1029/2010JA015513. Corrections: J. Geophys. Res. 116, A11102 (2011). https://doi.org/10.1029/2011JA017286

  • Webb, G.M., Hu, Q., Dasgupta, B., Roberts, D.A., Zank, G.P.: Alfven Simple Waves: Euler Potentials and Magnetic Helicity. Astrophys. J. 725, 2128–2151 (2010b). https://doi.org/10.1088/0004-637X/725/2/2128

    Article  ADS  Google Scholar 

  • Whitham, G.B.: Linear and Nonlinear Waves. New York, Wiley (1974)

    MATH  Google Scholar 

  • Zank, G.P., Matthaeus, W.H.: The Equations of Reduced Magnetohydrodynamics. J. Plasma Phys. 48(1), 85–100 (1992)

    Article  ADS  Google Scholar 

  • Zorawski, K.: Uber die Erhaltung der Wirbelbewegung. Bull. Acad. Sci. Cracov. C. R. 335 (1900)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Webb, G. (2018). The Model. In: Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws. Lecture Notes in Physics, vol 946. Springer, Cham. https://doi.org/10.1007/978-3-319-72511-6_2

Download citation

Publish with us

Policies and ethics