Advertisement

The Model

  • Gary Webb
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 946)

Abstract

The magnetohydrodynamic equations are:

References

  1. Anco, S.C., Bluman, G.: Direct Construction of Conservation Laws from Field Equations. Phys. Rev. Lett. 78(15), 2869–2873 (1997)Google Scholar
  2. Berger, M.A., Prior, C.: The Writhe of Open and Closed Curves. J. Phys. A Math. Gen. 39, 8321–8348 (2006)Google Scholar
  3. Bieber, J.W., Evenson, P.A., Matthaeus, W.H.: Magnetic Helicity of the Parker Field. Astrophys. J. 315, 700 (1987)Google Scholar
  4. Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations. Applied Mathematical Sciences Series 168. Springer, New York (2010)Google Scholar
  5. Bruno, R., Carbone, V., Veltri, P., Pieropaolo, E., Bavasonno, B.: Identifying Intermittency Effects in the Solar Wind. Planet. Space Sci. 49, 1201 (2001)ADSCrossRefGoogle Scholar
  6. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press/Clarendon Press, Oxford (1961)zbMATHGoogle Scholar
  7. Chandre, C., Morrison, P.J., Tassi, E.: On the Hamiltonian Formulation of Incompressible Ideal Fluids and Magnetohydrodynamics via Dirac’s Theory of Constraints. Phys. Lett. A 376, 737–743 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. Gosling, J.T., McComas, D.J., Roberts, D.A., Skoug, R.M.: A One Sided Aspect of Alfvénic Fluctuations in the Solar Wind. Astrophys. J. 695, L213–L216 (2009)ADSCrossRefGoogle Scholar
  9. Holm, D.D.: Geometric Mechanics, Part I: Dynamics and Symmetry. Imperial College Press, London (2008a). Distributed by World ScientificGoogle Scholar
  10. Holm, D.D.: Geometric Mechanics, Part II: Rotating, Translating and Rolling. Imperial College Press, London (2008b). Distributed by World ScientificGoogle Scholar
  11. Janhunen, P.: A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods. J. Comput. Phys. 160, 649–661 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. Kadomtsev, B.B., Pogutse, O.P.: Nonlinear Helical Perturbations of a Plasma in the Tokamak. J. Exp. Theor. Phys. 38, 283–290 (1974)ADSGoogle Scholar
  13. Kamchatnov, I.V.: Topological Soliton in Magnetohydrodynamics. Sov. Phys. 55(1), 69–73 (1982)MathSciNetGoogle Scholar
  14. Kuznetsov, E.A.: Vortex Line Representation for Hydrodynamic Type Equations. J. Nonlinear Math. Phys. 13(1), 64–80 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. Kuznetsov, E.A., Ruban, V.P.: Hamiltonian Dynamics of Vortex Lines for Systems of Hydrodynamic Type. J. Exp. Theor. Phys. Lett. 67, 1076 (1998)CrossRefGoogle Scholar
  16. Kuznetsov, E.A., Ruban, V.P.: Hamiltonian Dynamics of Vortex and Magnetic Field Lines in the Hydrodynamic Type Models. Phys. Rev. E 61, 831–841 (2000)ADSMathSciNetCrossRefGoogle Scholar
  17. Kuznetsov, E.A., Passot, T., Sulem, P.L.: Compressible Dynamics of Magnetic Field Lines for Incompressible MHD Flows. Phys. Plasmas 11, 1410 (2004)ADSMathSciNetCrossRefGoogle Scholar
  18. Low, B.C.: Three-Dimensional Structures of Magnetostatic Atmospheres. Astrophys. J. 293, 31–43 (1985)ADSCrossRefGoogle Scholar
  19. Matteini, L., Horbury, T.S., Pantellini, F., Velli, M., Schwartz, S.J.: Ion Kinetic Energy Conservation and Magnetic Field Strength Constancy in Multi-Fluid Solar Wind and Alfvénic Turbulence. Astrophys. J. 802(11), 4 pp. (2015)Google Scholar
  20. Morrison, P.J., Greene, J.M.: Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics (Errata). Phys. Rev. Lett. 48, 569 (1982)ADSCrossRefGoogle Scholar
  21. Morrison, P.J., Hazeltine, R.D.: Hamiltonian Formulation of Reduced Magnetohydrodynamics. Phys. Fluids 27(4), 886–897 (1984)ADSCrossRefzbMATHGoogle Scholar
  22. Newcomb, W.A.: Motion of Magnetic Lines of Force. Ann. Phys. N. Y. 3, 347 (1958)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. Oughton, S., Matthaeus, W.H., Dmitruk, P.: Reduced MHD in Astrophysical Applications: Two Dimensional or Three Dimensional? Astrophys. J. 839(2), 13 pp. (2017)Google Scholar
  24. Panofsky, W.K.H., Phillips, M.: Classical Electricity and Electromagnetism, sect. 9.4, 2nd edn., p. 164. Wesley, Reading (1964)Google Scholar
  25. Parker, E.N.: Cosmic Magnetic Fields. Oxford University Press, New York (1979)Google Scholar
  26. Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn., p. 710. Springer, New York (1987)Google Scholar
  27. Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., De Zeeuw, D.: A Solution Adaptive Upwind Scheme for Ideal Magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. Prim, R., Truesdell, C.: A Derivation of Zorawski’s Criterion for Permanent Vector Lines. Proc. Am. Math. Soc. 1, 32–34 (1950)MathSciNetzbMATHGoogle Scholar
  29. Pshenitsin, D.: Conservation laws of magnetohydrodynamics and their symmetry transformation properties. Ph.D. Thesis, Department of Physics, Brock University, Saint Catharines (2016). Available at https://dr.library.ca.handle/10464/9801
  30. Sagdeev, R.Z., Moiseev, S.S., Tur, A.V., Yanovsky, V.: Problems of the Theory of Strong Turbulence and Topological Solitons. In: Sagdeev, R.Z. (ed.) Nonlinear Phenomena in Plasma Physics and Hydrodynamics, pp. 137–182. Mir, Moscow (1986)Google Scholar
  31. Semenov, V.S., Korvinski, D.B., Biernat, H.K.: Euler Potentials for the MHD Kamchatnov-Hopf Soliton Solution. Nonlinear Process. Geophys. 9, 347–354 (2002)ADSCrossRefGoogle Scholar
  32. Stern, D.P.: The Motion of Magnetic Field Lines. Space Sci. Rev. 6, 143–173 (1966)ADSCrossRefGoogle Scholar
  33. Strauss, H.R.: Nonlinear Three Dimensional Magnetohydrodynamics of Non-circular Tokamaks. Phys. fluids 19, 134–140 (1976)ADSCrossRefGoogle Scholar
  34. Taylor, J.B.: Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields. Phys. Rev. Lett. 33, 1139–1141 (1974)ADSCrossRefGoogle Scholar
  35. Taylor, J.B.: Relaxation and Magnetic Reconnection in Plasmas. Rev. Mod. Phys. 58, 741–763 (1986)ADSCrossRefGoogle Scholar
  36. Thompson, A., Sweargin, J., Wickes, A., Bouwmeester, D.: Constructing a Class of Topological Solitons in Magnetohydrodynamics. Phys. Rev. E 89, 043104 (2014)ADSCrossRefGoogle Scholar
  37. Torok, T., Kliem, B., Berger, M.A., Linton, M.G., Demoulin, P., Van Driel-Gesztelyi, L.: The Evolution of Writhe in Kink-Unstable Flux Ropes and Erupting Filaments. Plasma Phys. Control. Fusion 56, 064012 (7 pp.) (2014)Google Scholar
  38. Truesdell, C.: The Kinematics of Vorticity. Indiana University Press, Bloomington (1954)zbMATHGoogle Scholar
  39. Truesdell, C., Toupin, R.A.: In: Flugge, S. (ed.) The Classical Field Theories. Handbuch der Physik III/I, pp. 226–793. Springer, Heidelberg (1960)Google Scholar
  40. Webb, G.M., Axford, W.I., Terasawa, T.: On the Drift Mechanism for Energetic Charged Particles at Shocks. Astrophys. J. 270, 537–553 (1983)ADSCrossRefGoogle Scholar
  41. Webb, G.M., Woodward, T.I., Brio, M., Zank, G.P.: Linear Magnetosonic N-waves and Green’s Functions. J. Plasma Phys. 49(Part 3), 465–513 (1993)Google Scholar
  42. Webb, G.M., Pogorelov, N.V., Zank, G.P.: MHD Simple Waves and the Divergence Wave. In: Twelfth International Solar Wind Conference, St. Malo. AIP Conference Proceedings 1216, pp. 300–303 (2009). https://doi.org/10.1063/1.3396300 ADSGoogle Scholar
  43. Webb, G.M., Hu, Q., Dasgupta, B., Zank, G.P.: Homotopy Formulas for the Magnetic Vector Potential and Magnetic Helicity: The Parker Spiral Interplanetary Magnetic Field and Magnetic Flux Ropes. J. Geophys. Res. (Space Phys.) 115, A10112 (2010a). https://doi.org/10.1029/2010JA015513. Corrections: J. Geophys. Res. 116, A11102 (2011). https://doi.org/10.1029/2011JA017286
  44. Webb, G.M., Hu, Q., Dasgupta, B., Roberts, D.A., Zank, G.P.: Alfven Simple Waves: Euler Potentials and Magnetic Helicity. Astrophys. J. 725, 2128–2151 (2010b). https://doi.org/10.1088/0004-637X/725/2/2128 ADSCrossRefGoogle Scholar
  45. Whitham, G.B.: Linear and Nonlinear Waves. New York, Wiley (1974)zbMATHGoogle Scholar
  46. Zank, G.P., Matthaeus, W.H.: The Equations of Reduced Magnetohydrodynamics. J. Plasma Phys. 48(1), 85–100 (1992)ADSCrossRefGoogle Scholar
  47. Zorawski, K.: Uber die Erhaltung der Wirbelbewegung. Bull. Acad. Sci. Cracov. C. R. 335 (1900)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gary Webb
    • 1
  1. 1.CSPARThe University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations