Advertisement

Introduction

  • Gary Webb
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 946)

Abstract

Variational methods are widely used in physics, engineering and applied mathematics. Noether’s theorems provide a route to deriving conservation laws for systems of differential equations governed by an action principle. Noether’s theorem applies to systems of Euler-Lagrange equations that are in Kovalevskaya form (e.g Olver (1993)). For other Euler-Lagrange systems, each nontrivial variational symmetry leads to a conservation law, but there is no guarantee that it is non-trivial.

References

  1. Anco, S.C., Bluman, G.: Derivation of Conservation Laws from Nonlocal Symmetries of Differential Equations. J. Math. Phys. 37(5), 2361–2375 (1996)Google Scholar
  2. Anco, S.C., Bluman, G.: Direct Construction of Conservation Laws from Field Equations. Phys. Rev. Lett. 78(15), 2869–2873 (1997)Google Scholar
  3. Anco, S.C., Bluman, G.W.: Direct Construction Method for Conservation Laws of Partial Differential Equations. Part I: Examples of Conservation Law Classification. Eur. J. Appl. Math. 13, 545–566 (2002a)Google Scholar
  4. Anco, S.C., Bluman, G.W.: Direct Construction Method for Conservation Laws of Partial Differential Equations. Part II: General Treatment. Eur. J. Appl. Math. 13, 567–585 (2002b)Google Scholar
  5. Berger, M.A., Field, G.B.: The Topological Properties of Magnetic Helicity. J. Fluid. Mech. 147, 133–148 (1984)Google Scholar
  6. Besse, N., Frisch, U.: Geometric Formulation of the Cauchy Invariants for Incompressible Euler Flow in Flat and Curved Spaces. J. Fluid Mech. 825, 412–478 (2017). arXiv:1701.01592v1Google Scholar
  7. Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations. Applied Mathematical Sciences Series 168. Springer, New York (2010)Google Scholar
  8. Brading, K.: Which Symmetry? Noether, Weyl and Conservation of Electric Charge. Stud. Hist. Philos. Mod. Phys. 33, 3–22 (2002)Google Scholar
  9. Bridges, T.J., Hydon, P.E., Reich, S.: Vorticity and Symplecticity in Lagrangian Fluid Dynamics. J. Phys. A Math. Gen. 38, 1403–1418 (2005)Google Scholar
  10. Calkin, M.G.: An Action Principle for Magnetohydrodynamics. Can. J. Phys. 41, 2241–2251 (1963)Google Scholar
  11. Calugareanu, G.: L’integral de Gauss et l’analyse des Noeds Tridimensionels. Rev. Math. Pure Appl. 4, 5–20 (1959)Google Scholar
  12. Chandre, C.: Casimir Invariants and the Jacobi Identity in Dirac’s Theory of Constraints of Constrained Hamiltonian Systems. J. Phys. A Math. Theor. 46(37), 375201 (2013)Google Scholar
  13. Chandre, C., Morrison, P.J., Tassi, E.: On the Hamiltonian Formulation of Incompressible Ideal Fluids and Magnetohydrodynamics via Dirac’s Theory of Constraints. Phys. Lett. A 376, 737–743 (2012)Google Scholar
  14. Chandre, C., de Guillebon, L., Back, A., Tassi, E., Morrison, P.J.: On the Use of Projectors for Hamiltonian Systems and Their Relationship with Dirac Brackets. J. Phys. A. Math. Theor. 46(12), 125203 (2013)Google Scholar
  15. Cheviakov, A.F.: Conservation Properties and Potential Systems of Vorticity-Type Equations. J. Math. Phys. 55, 033508 (16 pp.) (2014) (0022-2488/2014/55(3)/033508/16)Google Scholar
  16. Cheviakov, A.F., Anco, S.C.: Analytical Properties and Exact Solutions of Static Plasma Equilibrium Systems in Three Dimensions. Phys. Lett. A 372, 1363–1373 (2008)Google Scholar
  17. Cotter, C.J., Holm, D.D.: On Noether’s Theorem for Euler Poincaré Equation on the Diffeomorphism Group with Advected Quantities. Found. Comput. Math. (2012). https://doi.org/10.1007/S10208-012-9126-8
  18. Cotter, C.J., Holm, D.D., Hydon, P.E.: Multi-Symplectic Formulation of Fluid Dynamics Using the Inverse Map. Proc. R. Soc. Lond. 463, 2617–2687 (2007)Google Scholar
  19. Finn, J.H., Antonsen, T.M.: Magnetic Helicity: What Is it and What Is it Good for? Comments Plasma Phys. Contr. Fusion 9(3), 111 (1985)Google Scholar
  20. Finn, J.M., Antonsen, T.M.: Magnetic Helicity Injection for Configurations with Field Errors. Phys. Fluids 31(10), 3012–3017 (1988)Google Scholar
  21. Frieman, E.A., Rotenberg, M.: On Hydromagnetic Stability of Stationary Equilibria. Rev. Mod. Phys. 32(4), 898–902 (1960)Google Scholar
  22. Fuchs, J.C.: Symmetry Groups of Similarity Solutions of the MHD Equations. J. Math. Phys. 32, 1703–1708 (1991)Google Scholar
  23. Goldstein, H.: Classical Mechanics, 2nd edn. Addison Wesley, Reading (1980)Google Scholar
  24. Golovin, S.V.: Analytical Description of Stationary Ideal MHD Fluid Flows with Constant Total Pressure. Phys. Lett. A 374, 901–905 (2010)Google Scholar
  25. Golovin, S.V.: Natural Curvilinear Coordinates for Ideal MHD Equations. Non-stationary Flows with Constant Pressure. Phys. Lett. A c375, 283–290 (2011)Google Scholar
  26. Grundland, A.M., Lalague, L.: Lie Subgroups of Fluid Dynamics and Magnetohydrodynamics Equations. Can. J. Phys. 73, 463–477 (1995)Google Scholar
  27. Hameiri, E.: Variational Principles for Equilibrium States with Plasma Flow. Phys. Plasmas 5(9), 3270–3281 (1998). https://doi.org/1070-664X/98/5(9)/3270/12
  28. Hameiri, E.: Dynamically Accessible Perturbations and Magnetohydromagnetic Stability. Phys. Plasmas 10(7), 2643–2648 (2003). https://doi.org/1070-664X/2003/10(7)/2643/6
  29. Hameiri, E.: The Complete Set of Casimir Constants of the Motion in Magnetohydrodynamics. Phys. Plasmas 11(7), 3423–3431 (2004). https://doi.org/1070-664X/11(7)/3423/9
  30. Holm, D.D., Kupershmidt, B.A.: Poisson Brackets and Clebsch Representations for Magnetohydrodynamics, Multi-Fluid Plasmas and Elasticity. Phys. D 6D, 347–363 (1983a)Google Scholar
  31. Holm, D.D., Kupershmidt, B.A.: Noncanonical Hamiltonian Formulation of Ideal Magnetohydrodynamics. Physica D 7D, 330–333 (1983b)Google Scholar
  32. Holm, D.D., Marsden, J.E., Ratiu, T., Weinstein, A.: Nonlinear Stability of Fluid and Plasma Equilibria. Phys. Rep. (Review section of Phys. Rev. Lett.) 123(1 and 2), 1–116 (1985). https://doi.org/0370-1573/85
  33. Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler-Lagrange Equations and Semi-products with Application to Continuum Theories. Adv. Math. 137, 1–81 (1998)Google Scholar
  34. Hydon, P.E.: Multi-Symplectic Conservation Laws for Differential and Differential-Difference Equations. Proc. R. Soc. A 461, 1627–1637 (2005)Google Scholar
  35. Hydon, P.E., Mansfield, E.L.: Extensions of Noether’s Second Theorem: From Continuous to Discrete Systems. Proc. R. Soc. A 467, 3206–3221 (2011). https://doi.org/10.1098/rspa.2011.0158Google Scholar
  36. Kamchatnov, I.V.: Topological Soliton in Magnetohydrodynamics. Sov. Phys. 55(1), 69–73 (1982)Google Scholar
  37. Kats, A.V.: Variational Principle and Canonical Variables in Hydrodynamics with Discontinuities. Physica D 152–153, 459–474 (2001)Google Scholar
  38. Kats, A.V.: Variational Principle in Canonical Variables, Weber Transformation and Complete Set of Local Integrals of Motion for Dissipation-Free Magnetohydrodynamics. J. Exp. Theor. Phys. Lett. 77(12), 657–661 (2003)Google Scholar
  39. Kats, A.V.: Canonical Description of Ideal Magnetohydrodynamic Flows and Integrals of Motion. Phys. Rev. E 69(4), 046303 (2004)Google Scholar
  40. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, New York (1994)Google Scholar
  41. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman, San Francisco (1973)Google Scholar
  42. Moffatt, H.K.: The Degree of Knottedness of Tangled Vortex Lines. J. Fluid. Mech. 35, 117 (1969)Google Scholar
  43. Moffatt, H.K., Ricca, R.L.: Helicity and the Calugareanu Invariant. Proc. R. Soc. Lond. Ser. A 439, 411 (1992)Google Scholar
  44. Moiseev, S.S., Sagdeev, R.Z., Tur, A.V., Yanovskii, V.V.: On the Freezing-in Integrals and Lagrange Invariants in Hydrodynamic Models. Sov. Phys. J. Exp. Theor. Phys. 56(1), 117–123 (1982)Google Scholar
  45. Morrison, P.J.: Poisson Brackets for Fluids and Plasmas. In: Tabor, M., Treve, Y.M. (eds.) Mathematical Methods in Hydrodynamics and Integrability of Dynamical Systems. AIP Conference Proceedings 88, pp. 13–46. American Institute of Physics (1982)Google Scholar
  46. Morrison, P.J., Eliezer, S.: Spontaneous Symmetry Breaking and Neutral Stability in the Noncanonical Hamiltian Formalism. Phys. Rev. A 33(6), 4205–4214 (1986)Google Scholar
  47. Morrison, P.J., Greene, J.M.: Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics. Phys. Rev. Lett. 45, 790–794 (1980)Google Scholar
  48. Morrison, P.J., Greene, J.M.: Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics (Errata). Phys. Rev. Lett. 48, 569 (1982)Google Scholar
  49. Newcomb, W.A.: Lagrangian and Hamiltonian Methods in Magnetohydrodynamics. Nucl. Fusion Suppl. (Part 2), 451–463 (1962)Google Scholar
  50. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, New York (1993)Google Scholar
  51. Padhye, N.S.: Topics in lagrangian and hamiltonian fluid dynamics: relabeling symmetry and ion acoustic wave stability. Ph.D. Dissertation, University of Texas at Austin (1998)Google Scholar
  52. Padhye, N.S., Morrison, P.J.: Fluid Relabeling Symmetry. Phys. Lett. A 219, 287–292 (1996a)Google Scholar
  53. Padhye, N.S., Morrison, P.J.: Relabeling Symmetries in Hydrodynamics and Magnetohydrodynamics. Plasma Phys. Rep. 22, 869–877 (1996b)ADSGoogle Scholar
  54. Parker, E.N.: Dynamics of the Interplanetary Gas and Magnetic Field. Astrophys. J. 128, 664–676 (1958)ADSCrossRefGoogle Scholar
  55. Pshenitsin, D.: Conservation laws of magnetohydrodynamics and their symmetry transformation properties. Ph.D. Thesis, Department of Physics, Brock University, Saint Catharines (2016). Available at https://dr.library.ca.handle/10464/9801
  56. Rosenhaus, V.: Infinite Symmetries and Conservation Laws. J. Math. Phys. 43, 6129–6150 (2002). https://doi.org/10.1063/1.1517394 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. Rosenhaus, V., Shankar, R.: Second Noether Theorem for Quasi-Noether Systems. J. Phys. A Math. Theor. 49, 175205 (22 pp.) (2016). https://doi.org/1088/1751-8113/49/17/175205
  58. Rosenhaus, V., Shankar, R.: Sub-symmetries I. Main Properties and Applications (2017a). Available on Researchgate publication/313892895Google Scholar
  59. Rosenhaus, V., Shankar, R.: Sub-symmetries II. Sub-symmetries and Conservation Laws (2017b). Available on ResearchgateGoogle Scholar
  60. Sagdeev, R.Z., Tur, A.V., Yanovsky, V.V.: Construction of frozen in integrals, Lagrangian and topological invariants in hydrodynamical models. In: Moffatt, H.K., Tsinober, A. (eds.) Proceedings of the IUTAM Symposium. Topological Fluid dynamics, pp. 421–428. Cambridge University Press, Cambridge (1990)Google Scholar
  61. Salmon, R.: Hamilton’s Principle and Ertel’s Theorem. AIP Conf. Proc. 88, 127–135 (1982)ADSMathSciNetzbMATHGoogle Scholar
  62. Salmon, R.: Hamiltonian Fluid Mechanics. Ann. Rev. Fluid Mech. 20, 225–256 (1988)ADSCrossRefGoogle Scholar
  63. Schief, W.K.: Hidden Integrability in Ideal Magnetohydrodynamics: The Pohlmeyer-Lund-Regge Model. Phys. Plasmas 10, 2677–2685 (2003)ADSMathSciNetCrossRefGoogle Scholar
  64. Semenov, V.S., Korvinski, D.B., Biernat, H.K.: Euler Potentials for the MHD Kamchatnov-Hopf Soliton Solution. Nonlinear Process. Geophys. 9, 347–354 (2002)ADSCrossRefGoogle Scholar
  65. Sjöberg, A., Mahomed, F.M.: Nonlocal Symmetries and Conservation Laws for One Dimensional Gas Dynamics Equations. Appl. Math. Comput. 150, 379–397 (2004)MathSciNetzbMATHGoogle Scholar
  66. Tanehashi, K., Yoshida, Z.: Gauge Symmetries and Noether Charges in Clebsch-Parameterized Magnetohydrodynamics. J. Phys. A Math. Theor. 48, 495501 (20 pp.) (2015). https://doi.org/10.1088/1751-8113/48/49/495501
  67. Taylor, J.B.: Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields. Phys. Rev. Lett. 33, 1139–1141 (1974)ADSCrossRefGoogle Scholar
  68. Taylor, J.B.: Relaxation and Magnetic Reconnection in Plasmas. Rev. Mod. Phys. 58, 741–763 (1986)ADSCrossRefGoogle Scholar
  69. Torok, T., Berger, M.A., Kliem, B.: The Writhe of Helical Structures in the Solar Corona. Astron. Astrophys. 516, A49 (p. 11) (2010)Google Scholar
  70. Torok, T., Kliem, B., Berger, M.A., Linton, M.G., Demoulin, P., Van Driel-Gesztelyi, L.: The Evolution of Writhe in Kink-Unstable Flux Ropes and Erupting Filaments. Plasma Phys. Control. Fusion 56, 064012 (7 pp.) (2014)Google Scholar
  71. Tur, A.V., Yanovsky, V.V.: Invariants in Dissipationless Hydrodynamic Media. J. Fluid Mech. 248, 67–106 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. Urbantke, H.K.: The Hopf Fibration-Seven Times in Physics. J. Geom. Phys. 46(2), 125–150 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. Volkov, D.V., Tur, A.V., Janovsky, V.V.: Hidden Supersymmetry of Classical Systems (Hydrodynamics and Conservation Laws). Phys. Lett. A 203, 357–361 (1995)ADSCrossRefGoogle Scholar
  74. Webb, G.M., Anco, S.C.: On Magnetohydrodynamic Gauge Field Theory. J. Phys. A Math. Theor. 50, 255501, 34 pp. (2017)Google Scholar
  75. Webb, G.M., Zank, G.P.: Fluid Relabelling Symmetries, Lie Point Symmetries and the Lagrangian Map in Magnetohydrodynamics and Gas Dynamics. J. Phys. A. Math. Theor. 40, 545–579 (2007). https://doi.org/10.1088/1751-8113/40/3/013 zbMATHGoogle Scholar
  76. Webb, G.M., Woodward, T.I., Brio, M., Zank, G.P.: Linear Magnetosonic N-waves and Green’s Functions. J. Plasma Phys. 49(Part 3), 465–513 (1993)Google Scholar
  77. Webb, G.M., Zank, G.P., Kaghashvili, E.Kh., Ratkiewicz, R.E.: Magnetohydrodynamic Waves in Non-uniform Flows I: A Variational Approach. J. Plasma Phys. 71(6), 785–809 (2005a). https://doi.org/10.1017/S00223778050003739 ADSCrossRefGoogle Scholar
  78. Webb, G.M., Zank, G.P., Kaghashvili, E.Kh., Ratkiewicz, R.E.: Magnetohydrodynamic Waves in Non-uniform Flows II: Stress Energy Tensors, Conservation Laws and Lie Symmetries. J. Plasma Phys. 71, 811–857 (2005b). https://doi.org/10.1017/S00223778050003740 Google Scholar
  79. Webb, G.M., Pogorelov, N.V., Zank, G.P.: MHD Simple Waves and the Divergence Wave. In: Twelfth International Solar Wind Conference, St. Malo. AIP Conference Proceedings 1216, pp. 300–303 (2009). https://doi.org/10.1063/1.3396300 ADSGoogle Scholar
  80. Webb, G.M., Hu, Q., Dasgupta, B., Zank, G.P.: Homotopy Formulas for the Magnetic Vector Potential and Magnetic Helicity: The Parker Spiral Interplanetary Magnetic Field and Magnetic Flux Ropes. J. Geophys. Res. (Space Phys.) 115, A10112 (2010a). https://doi.org/10.1029/2010JA015513. Corrections: J. Geophys. Res. 116, A11102 (2011). https://doi.org/10.1029/2011JA017286
  81. Webb, G.M., Dasgupta, B., McKenzie, J.F., Hu, Q., Zank, G.P.: Local and Nonlocal Advected Invariants and Helicities in Magnetohydrodynamics and Gas Dynamics I: Lie Dragging Approach. J. Phys. A. Math. Theor. 47, 095501 (33 pp.) (2014a). https://doi.org/10.1088/1751-8113/49/9/095501. Preprint available at http://arxiv.org/abs/1307.1105
  82. Woltjer, L.: A Theorem on Force-Free Magnetic Fields. Proc. Natl. Acad. Sci. 44, 489 (1958)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. Yahalom, A.: Aharonov-Bohm Effects in Magnetohydrodynamics. Phys. Lett. A 377, 1898–1904 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. Yahalom, A.: A Conserved Cross Helicity for Non-barotropic MHD. Geophys. Astrophys. Fluid Dyn. 111(2), 131–137 (2017a). Preprint. arXiv:1605.02537v1Google Scholar
  85. Yahalom, A.: Non Barotropic Cross Helicity Conservation and the Aharonov-Bohm Effect in Magnetohydrodynamics. Fluid Dyn. Res. (2017b). https://doi.org/10.1088/1873-7005/aa6fc7Google Scholar
  86. Yahalom, A., Lynden-Bell, D.: Simplified Variational Principle for Barotropic Magnetohydrodynamics. J. Fluid Mech. 607, 235–265 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  87. Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian Formalism for Nonlinear Waves. Phys. Uspekhi 40(11), 1087–1116 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gary Webb
    • 1
  1. 1.CSPARThe University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations