• Gary Webb
Part of the Lecture Notes in Physics book series (LNP, volume 946)


Variational methods are widely used in physics, engineering and applied mathematics. Noether’s theorems provide a route to deriving conservation laws for systems of differential equations governed by an action principle. Noether’s theorem applies to systems of Euler-Lagrange equations that are in Kovalevskaya form (e.g Olver (1993)). For other Euler-Lagrange systems, each nontrivial variational symmetry leads to a conservation law, but there is no guarantee that it is non-trivial.


  1. Anco, S.C., Bluman, G.: Derivation of Conservation Laws from Nonlocal Symmetries of Differential Equations. J. Math. Phys. 37(5), 2361–2375 (1996)Google Scholar
  2. Anco, S.C., Bluman, G.: Direct Construction of Conservation Laws from Field Equations. Phys. Rev. Lett. 78(15), 2869–2873 (1997)Google Scholar
  3. Anco, S.C., Bluman, G.W.: Direct Construction Method for Conservation Laws of Partial Differential Equations. Part I: Examples of Conservation Law Classification. Eur. J. Appl. Math. 13, 545–566 (2002a)Google Scholar
  4. Anco, S.C., Bluman, G.W.: Direct Construction Method for Conservation Laws of Partial Differential Equations. Part II: General Treatment. Eur. J. Appl. Math. 13, 567–585 (2002b)Google Scholar
  5. Berger, M.A., Field, G.B.: The Topological Properties of Magnetic Helicity. J. Fluid. Mech. 147, 133–148 (1984)Google Scholar
  6. Besse, N., Frisch, U.: Geometric Formulation of the Cauchy Invariants for Incompressible Euler Flow in Flat and Curved Spaces. J. Fluid Mech. 825, 412–478 (2017). arXiv:1701.01592v1Google Scholar
  7. Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations. Applied Mathematical Sciences Series 168. Springer, New York (2010)Google Scholar
  8. Brading, K.: Which Symmetry? Noether, Weyl and Conservation of Electric Charge. Stud. Hist. Philos. Mod. Phys. 33, 3–22 (2002)Google Scholar
  9. Bridges, T.J., Hydon, P.E., Reich, S.: Vorticity and Symplecticity in Lagrangian Fluid Dynamics. J. Phys. A Math. Gen. 38, 1403–1418 (2005)Google Scholar
  10. Calkin, M.G.: An Action Principle for Magnetohydrodynamics. Can. J. Phys. 41, 2241–2251 (1963)Google Scholar
  11. Calugareanu, G.: L’integral de Gauss et l’analyse des Noeds Tridimensionels. Rev. Math. Pure Appl. 4, 5–20 (1959)Google Scholar
  12. Chandre, C.: Casimir Invariants and the Jacobi Identity in Dirac’s Theory of Constraints of Constrained Hamiltonian Systems. J. Phys. A Math. Theor. 46(37), 375201 (2013)Google Scholar
  13. Chandre, C., Morrison, P.J., Tassi, E.: On the Hamiltonian Formulation of Incompressible Ideal Fluids and Magnetohydrodynamics via Dirac’s Theory of Constraints. Phys. Lett. A 376, 737–743 (2012)Google Scholar
  14. Chandre, C., de Guillebon, L., Back, A., Tassi, E., Morrison, P.J.: On the Use of Projectors for Hamiltonian Systems and Their Relationship with Dirac Brackets. J. Phys. A. Math. Theor. 46(12), 125203 (2013)Google Scholar
  15. Cheviakov, A.F.: Conservation Properties and Potential Systems of Vorticity-Type Equations. J. Math. Phys. 55, 033508 (16 pp.) (2014) (0022-2488/2014/55(3)/033508/16)Google Scholar
  16. Cheviakov, A.F., Anco, S.C.: Analytical Properties and Exact Solutions of Static Plasma Equilibrium Systems in Three Dimensions. Phys. Lett. A 372, 1363–1373 (2008)Google Scholar
  17. Cotter, C.J., Holm, D.D.: On Noether’s Theorem for Euler Poincaré Equation on the Diffeomorphism Group with Advected Quantities. Found. Comput. Math. (2012).
  18. Cotter, C.J., Holm, D.D., Hydon, P.E.: Multi-Symplectic Formulation of Fluid Dynamics Using the Inverse Map. Proc. R. Soc. Lond. 463, 2617–2687 (2007)Google Scholar
  19. Finn, J.H., Antonsen, T.M.: Magnetic Helicity: What Is it and What Is it Good for? Comments Plasma Phys. Contr. Fusion 9(3), 111 (1985)Google Scholar
  20. Finn, J.M., Antonsen, T.M.: Magnetic Helicity Injection for Configurations with Field Errors. Phys. Fluids 31(10), 3012–3017 (1988)Google Scholar
  21. Frieman, E.A., Rotenberg, M.: On Hydromagnetic Stability of Stationary Equilibria. Rev. Mod. Phys. 32(4), 898–902 (1960)Google Scholar
  22. Fuchs, J.C.: Symmetry Groups of Similarity Solutions of the MHD Equations. J. Math. Phys. 32, 1703–1708 (1991)Google Scholar
  23. Goldstein, H.: Classical Mechanics, 2nd edn. Addison Wesley, Reading (1980)Google Scholar
  24. Golovin, S.V.: Analytical Description of Stationary Ideal MHD Fluid Flows with Constant Total Pressure. Phys. Lett. A 374, 901–905 (2010)Google Scholar
  25. Golovin, S.V.: Natural Curvilinear Coordinates for Ideal MHD Equations. Non-stationary Flows with Constant Pressure. Phys. Lett. A c375, 283–290 (2011)Google Scholar
  26. Grundland, A.M., Lalague, L.: Lie Subgroups of Fluid Dynamics and Magnetohydrodynamics Equations. Can. J. Phys. 73, 463–477 (1995)Google Scholar
  27. Hameiri, E.: Variational Principles for Equilibrium States with Plasma Flow. Phys. Plasmas 5(9), 3270–3281 (1998).
  28. Hameiri, E.: Dynamically Accessible Perturbations and Magnetohydromagnetic Stability. Phys. Plasmas 10(7), 2643–2648 (2003).
  29. Hameiri, E.: The Complete Set of Casimir Constants of the Motion in Magnetohydrodynamics. Phys. Plasmas 11(7), 3423–3431 (2004).
  30. Holm, D.D., Kupershmidt, B.A.: Poisson Brackets and Clebsch Representations for Magnetohydrodynamics, Multi-Fluid Plasmas and Elasticity. Phys. D 6D, 347–363 (1983a)Google Scholar
  31. Holm, D.D., Kupershmidt, B.A.: Noncanonical Hamiltonian Formulation of Ideal Magnetohydrodynamics. Physica D 7D, 330–333 (1983b)Google Scholar
  32. Holm, D.D., Marsden, J.E., Ratiu, T., Weinstein, A.: Nonlinear Stability of Fluid and Plasma Equilibria. Phys. Rep. (Review section of Phys. Rev. Lett.) 123(1 and 2), 1–116 (1985).
  33. Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler-Lagrange Equations and Semi-products with Application to Continuum Theories. Adv. Math. 137, 1–81 (1998)Google Scholar
  34. Hydon, P.E.: Multi-Symplectic Conservation Laws for Differential and Differential-Difference Equations. Proc. R. Soc. A 461, 1627–1637 (2005)Google Scholar
  35. Hydon, P.E., Mansfield, E.L.: Extensions of Noether’s Second Theorem: From Continuous to Discrete Systems. Proc. R. Soc. A 467, 3206–3221 (2011). Scholar
  36. Kamchatnov, I.V.: Topological Soliton in Magnetohydrodynamics. Sov. Phys. 55(1), 69–73 (1982)Google Scholar
  37. Kats, A.V.: Variational Principle and Canonical Variables in Hydrodynamics with Discontinuities. Physica D 152–153, 459–474 (2001)Google Scholar
  38. Kats, A.V.: Variational Principle in Canonical Variables, Weber Transformation and Complete Set of Local Integrals of Motion for Dissipation-Free Magnetohydrodynamics. J. Exp. Theor. Phys. Lett. 77(12), 657–661 (2003)Google Scholar
  39. Kats, A.V.: Canonical Description of Ideal Magnetohydrodynamic Flows and Integrals of Motion. Phys. Rev. E 69(4), 046303 (2004)Google Scholar
  40. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, New York (1994)Google Scholar
  41. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman, San Francisco (1973)Google Scholar
  42. Moffatt, H.K.: The Degree of Knottedness of Tangled Vortex Lines. J. Fluid. Mech. 35, 117 (1969)Google Scholar
  43. Moffatt, H.K., Ricca, R.L.: Helicity and the Calugareanu Invariant. Proc. R. Soc. Lond. Ser. A 439, 411 (1992)Google Scholar
  44. Moiseev, S.S., Sagdeev, R.Z., Tur, A.V., Yanovskii, V.V.: On the Freezing-in Integrals and Lagrange Invariants in Hydrodynamic Models. Sov. Phys. J. Exp. Theor. Phys. 56(1), 117–123 (1982)Google Scholar
  45. Morrison, P.J.: Poisson Brackets for Fluids and Plasmas. In: Tabor, M., Treve, Y.M. (eds.) Mathematical Methods in Hydrodynamics and Integrability of Dynamical Systems. AIP Conference Proceedings 88, pp. 13–46. American Institute of Physics (1982)Google Scholar
  46. Morrison, P.J., Eliezer, S.: Spontaneous Symmetry Breaking and Neutral Stability in the Noncanonical Hamiltian Formalism. Phys. Rev. A 33(6), 4205–4214 (1986)Google Scholar
  47. Morrison, P.J., Greene, J.M.: Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics. Phys. Rev. Lett. 45, 790–794 (1980)Google Scholar
  48. Morrison, P.J., Greene, J.M.: Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics (Errata). Phys. Rev. Lett. 48, 569 (1982)Google Scholar
  49. Newcomb, W.A.: Lagrangian and Hamiltonian Methods in Magnetohydrodynamics. Nucl. Fusion Suppl. (Part 2), 451–463 (1962)Google Scholar
  50. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, New York (1993)Google Scholar
  51. Padhye, N.S.: Topics in lagrangian and hamiltonian fluid dynamics: relabeling symmetry and ion acoustic wave stability. Ph.D. Dissertation, University of Texas at Austin (1998)Google Scholar
  52. Padhye, N.S., Morrison, P.J.: Fluid Relabeling Symmetry. Phys. Lett. A 219, 287–292 (1996a)Google Scholar
  53. Padhye, N.S., Morrison, P.J.: Relabeling Symmetries in Hydrodynamics and Magnetohydrodynamics. Plasma Phys. Rep. 22, 869–877 (1996b)ADSGoogle Scholar
  54. Parker, E.N.: Dynamics of the Interplanetary Gas and Magnetic Field. Astrophys. J. 128, 664–676 (1958)ADSCrossRefGoogle Scholar
  55. Pshenitsin, D.: Conservation laws of magnetohydrodynamics and their symmetry transformation properties. Ph.D. Thesis, Department of Physics, Brock University, Saint Catharines (2016). Available at
  56. Rosenhaus, V.: Infinite Symmetries and Conservation Laws. J. Math. Phys. 43, 6129–6150 (2002). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. Rosenhaus, V., Shankar, R.: Second Noether Theorem for Quasi-Noether Systems. J. Phys. A Math. Theor. 49, 175205 (22 pp.) (2016).
  58. Rosenhaus, V., Shankar, R.: Sub-symmetries I. Main Properties and Applications (2017a). Available on Researchgate publication/313892895Google Scholar
  59. Rosenhaus, V., Shankar, R.: Sub-symmetries II. Sub-symmetries and Conservation Laws (2017b). Available on ResearchgateGoogle Scholar
  60. Sagdeev, R.Z., Tur, A.V., Yanovsky, V.V.: Construction of frozen in integrals, Lagrangian and topological invariants in hydrodynamical models. In: Moffatt, H.K., Tsinober, A. (eds.) Proceedings of the IUTAM Symposium. Topological Fluid dynamics, pp. 421–428. Cambridge University Press, Cambridge (1990)Google Scholar
  61. Salmon, R.: Hamilton’s Principle and Ertel’s Theorem. AIP Conf. Proc. 88, 127–135 (1982)ADSMathSciNetzbMATHGoogle Scholar
  62. Salmon, R.: Hamiltonian Fluid Mechanics. Ann. Rev. Fluid Mech. 20, 225–256 (1988)ADSCrossRefGoogle Scholar
  63. Schief, W.K.: Hidden Integrability in Ideal Magnetohydrodynamics: The Pohlmeyer-Lund-Regge Model. Phys. Plasmas 10, 2677–2685 (2003)ADSMathSciNetCrossRefGoogle Scholar
  64. Semenov, V.S., Korvinski, D.B., Biernat, H.K.: Euler Potentials for the MHD Kamchatnov-Hopf Soliton Solution. Nonlinear Process. Geophys. 9, 347–354 (2002)ADSCrossRefGoogle Scholar
  65. Sjöberg, A., Mahomed, F.M.: Nonlocal Symmetries and Conservation Laws for One Dimensional Gas Dynamics Equations. Appl. Math. Comput. 150, 379–397 (2004)MathSciNetzbMATHGoogle Scholar
  66. Tanehashi, K., Yoshida, Z.: Gauge Symmetries and Noether Charges in Clebsch-Parameterized Magnetohydrodynamics. J. Phys. A Math. Theor. 48, 495501 (20 pp.) (2015).
  67. Taylor, J.B.: Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields. Phys. Rev. Lett. 33, 1139–1141 (1974)ADSCrossRefGoogle Scholar
  68. Taylor, J.B.: Relaxation and Magnetic Reconnection in Plasmas. Rev. Mod. Phys. 58, 741–763 (1986)ADSCrossRefGoogle Scholar
  69. Torok, T., Berger, M.A., Kliem, B.: The Writhe of Helical Structures in the Solar Corona. Astron. Astrophys. 516, A49 (p. 11) (2010)Google Scholar
  70. Torok, T., Kliem, B., Berger, M.A., Linton, M.G., Demoulin, P., Van Driel-Gesztelyi, L.: The Evolution of Writhe in Kink-Unstable Flux Ropes and Erupting Filaments. Plasma Phys. Control. Fusion 56, 064012 (7 pp.) (2014)Google Scholar
  71. Tur, A.V., Yanovsky, V.V.: Invariants in Dissipationless Hydrodynamic Media. J. Fluid Mech. 248, 67–106 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. Urbantke, H.K.: The Hopf Fibration-Seven Times in Physics. J. Geom. Phys. 46(2), 125–150 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. Volkov, D.V., Tur, A.V., Janovsky, V.V.: Hidden Supersymmetry of Classical Systems (Hydrodynamics and Conservation Laws). Phys. Lett. A 203, 357–361 (1995)ADSCrossRefGoogle Scholar
  74. Webb, G.M., Anco, S.C.: On Magnetohydrodynamic Gauge Field Theory. J. Phys. A Math. Theor. 50, 255501, 34 pp. (2017)Google Scholar
  75. Webb, G.M., Zank, G.P.: Fluid Relabelling Symmetries, Lie Point Symmetries and the Lagrangian Map in Magnetohydrodynamics and Gas Dynamics. J. Phys. A. Math. Theor. 40, 545–579 (2007). zbMATHGoogle Scholar
  76. Webb, G.M., Woodward, T.I., Brio, M., Zank, G.P.: Linear Magnetosonic N-waves and Green’s Functions. J. Plasma Phys. 49(Part 3), 465–513 (1993)Google Scholar
  77. Webb, G.M., Zank, G.P., Kaghashvili, E.Kh., Ratkiewicz, R.E.: Magnetohydrodynamic Waves in Non-uniform Flows I: A Variational Approach. J. Plasma Phys. 71(6), 785–809 (2005a). ADSCrossRefGoogle Scholar
  78. Webb, G.M., Zank, G.P., Kaghashvili, E.Kh., Ratkiewicz, R.E.: Magnetohydrodynamic Waves in Non-uniform Flows II: Stress Energy Tensors, Conservation Laws and Lie Symmetries. J. Plasma Phys. 71, 811–857 (2005b). Google Scholar
  79. Webb, G.M., Pogorelov, N.V., Zank, G.P.: MHD Simple Waves and the Divergence Wave. In: Twelfth International Solar Wind Conference, St. Malo. AIP Conference Proceedings 1216, pp. 300–303 (2009). ADSGoogle Scholar
  80. Webb, G.M., Hu, Q., Dasgupta, B., Zank, G.P.: Homotopy Formulas for the Magnetic Vector Potential and Magnetic Helicity: The Parker Spiral Interplanetary Magnetic Field and Magnetic Flux Ropes. J. Geophys. Res. (Space Phys.) 115, A10112 (2010a). Corrections: J. Geophys. Res. 116, A11102 (2011).
  81. Webb, G.M., Dasgupta, B., McKenzie, J.F., Hu, Q., Zank, G.P.: Local and Nonlocal Advected Invariants and Helicities in Magnetohydrodynamics and Gas Dynamics I: Lie Dragging Approach. J. Phys. A. Math. Theor. 47, 095501 (33 pp.) (2014a). Preprint available at
  82. Woltjer, L.: A Theorem on Force-Free Magnetic Fields. Proc. Natl. Acad. Sci. 44, 489 (1958)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. Yahalom, A.: Aharonov-Bohm Effects in Magnetohydrodynamics. Phys. Lett. A 377, 1898–1904 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. Yahalom, A.: A Conserved Cross Helicity for Non-barotropic MHD. Geophys. Astrophys. Fluid Dyn. 111(2), 131–137 (2017a). Preprint. arXiv:1605.02537v1Google Scholar
  85. Yahalom, A.: Non Barotropic Cross Helicity Conservation and the Aharonov-Bohm Effect in Magnetohydrodynamics. Fluid Dyn. Res. (2017b). Scholar
  86. Yahalom, A., Lynden-Bell, D.: Simplified Variational Principle for Barotropic Magnetohydrodynamics. J. Fluid Mech. 607, 235–265 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  87. Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian Formalism for Nonlinear Waves. Phys. Uspekhi 40(11), 1087–1116 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gary Webb
    • 1
  1. 1.CSPARThe University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations