Genome Regulation Is All Non-local: Maps and Functions

Part of the The Frontiers Collection book series (FRONTCOLL)


In this chapter, we try to envision genomes both as macroscopic entities that living systems carry in the form of genetic information as well as relevant nitty-gritty details of the mechanisms that help maintain genome stability. The human genome contains approximately 6 billion bases of DNA, extending approximately to 2 m of DNA in a cell.


  1. B.R. Adams, S.E. Golding, R.R. Rao, K. Valerie, Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants. PLoS ONE 5(4), e10001 (2010a)ADSCrossRefGoogle Scholar
  2. B.R. Adams, A.J. Hawkins, L.F. Povirk, K. Valerie, ATM-independent, high-fidelity nonhomologous end joining predominates in human embryonic stem cells. Aging (Albany NY) 2(9), 582–596 (2010b)CrossRefGoogle Scholar
  3. A. Aguilar-Mahecha, B.F. Hales, B. Robaire, Expression of stress response genes in germ cells during spermatogenesis. Biol. Reprod. 65(1), 119–127 (2001)CrossRefGoogle Scholar
  4. A. Armesilla-Diaz, P. Bragado, I. Del Valle, E. Cuevas, I. Lazaro, C. Martin, J.C. Cigudosa, A. Silva, p53 regulates the self-renewal and differentiation of neural precursors. Neuroscience 158(4), 1378–1389 (2009a)CrossRefGoogle Scholar
  5. A. Armesilla-Diaz, G. Elvira, A. Silva, p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells. Exp. Cell Res. 315(20), 3598–3610 (2009b)CrossRefGoogle Scholar
  6. A. Bancaud, S. Huet, N. Daigle, J. Mozziconacci, J. Beaudouin, J. Ellenberg, Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J. 28, 3785–3798 (2009)CrossRefGoogle Scholar
  7. T.S. Barton, B. Robaire, B.F. Hales, DNA damage recognition in the rat zygote following chronic paternal cyclophosphamide exposure. Toxicol. Sci. 100(2), 495–503 (2007)CrossRefGoogle Scholar
  8. K.A. Becker, P.N. Ghule, J.A. Therrien, J.B. Lian, J.L. Stein, A.J. van Wijnen, G.S. Stein, Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J. Cell. Physiol. 209(3), 883–893 (2006)CrossRefGoogle Scholar
  9. W.A. Bickmore, The spatial organization of the human genome. Annu. Rev. Genomics Hum. Genet. 14, 67–84 (2013)CrossRefGoogle Scholar
  10. A.N. Bogomazova, M.A. Lagarkova, L.V. Tskhovrebova, M.V. Shutova, S.L. Kiselev, Error-prone nonhomologous end joining repair operates in human pluripotent stem cells during late G2. Aging (Albany NY) 3(6), 584–596 (2011)CrossRefGoogle Scholar
  11. A.L. Bredemeyer, B.A. Helmink, C.L. Innes, B. Calderon, L.M. McGinnis, G.K. Mahowald, E.J. Gapud, L.M. Walker, J.B. Collins, B.K. Weaver, L. Mandik-Nayak, R.D. Schreiber, P.M. Allen, M.J. May, R.S. Paules, C.H. Bassing, B.P. Sleckman, DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes. Nature 456(7223), 819–823 (2008)ADSCrossRefGoogle Scholar
  12. J. Carroll, P. Marangos, The DNA damage response in mammalian oocytes. Front. Genet. 4, 117 (2013)CrossRefGoogle Scholar
  13. S. Chakraborty, I. Mehta, M. Kulashreshtha, B.J. Rao, Quantitative analysis of chromosome localization in the nucleus. Methods Mol. Biol. 1228, 223–233 (2015).
  14. D. Chen, K.Z. Pan, J.E. Palter, P. Kapahi, Longevity determined by developmental arrest genes in Caenorhabditis elegans. Aging Cell 6(4), 525–533 (2007)CrossRefGoogle Scholar
  15. K.K. Chiruvella, R. Sebastian, S. Sharma, A.A. Karande, B. Choudhary, S.C. Raghavan, Time-dependent predominance of nonhomologous DNA end-joining pathways during embryonic development in mice. J. Mol. Biol. 417(3), 197–211 (2012)CrossRefGoogle Scholar
  16. V.M. Craddock, A.R. Henderson, S. Gash, Repair and replication of DNA in rat brain and liver during foetal and post-natal development, in relation to nitroso-alkyl-urea induced carcinogenesis. J. Cancer Res. Clin. Oncol. 108(1), 30–35 (1984)CrossRefGoogle Scholar
  17. T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001)CrossRefGoogle Scholar
  18. T. Cremer, M. Cremer, Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, a003889 (2010)CrossRefGoogle Scholar
  19. B. de Laval, P. Pawlikowska, D. Barbieri, C. Besnard-Guerin, A. Cico, R. Kumar, M. Gaudry, V. Baud, F. Porteu, Thrombopoietin promotes NHEJ DNA repair in hematopoietic stem cells through specific activation of Erk and NF-kappaB pathways and their target IEX-1. Blood, 2014 Jan 23, vol. 123(4), pp. 509–519 (2013). Epub 2013 Nov 1
  20. B. de Laval, P. Pawlikowska, L. Petit-Cocault, C. Bilhou-Nabera, G. Aubin-Houzelstein, M. Souyri, F. Pouzoulet, M. Gaudry, F. Porteu, Thrombopoietin-increased DNA-PK-dependent DNA repair limits hematopoietic stem and progenitor cell mutagenesis in response to DNA damage. Cell Stem Cell 12(1), 37–48 (2013)CrossRefGoogle Scholar
  21. A. Derijck, G. van der Heijden, M. Giele, M. Philippens, P. de Boer, DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum. Mol. Genet. 17(13), 1922–1937 (2008)CrossRefGoogle Scholar
  22. J.A. Desmarais, M.J. Hoffmann, G. Bingham, M.E. Gagou, M. Meuth, P.W. Andrews, Human embryonic stem cells fail to activate CHK1 and commit to apoptosis in response to DNA replication stress. Stem Cells 30(7), 1385–1393 (2012)CrossRefGoogle Scholar
  23. D.G. Eickbush, J. Ye, X. Zhang, W.D. Burke, T.H. Eickbush, Epigenetic regulation of retrotransposons within the nucleolus of Drosophila. Mol. Cell. Biol. 28(20), 6452–6461 (2008)CrossRefGoogle Scholar
  24. M.A. Ermolaeva, A. Segref, A. Dakhovnik, H.L. Ou, J.I. Schneider, O. Utermohlen, T. Hoppe, B. Schumacher, DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. Nature 501(7467), 416–420 (2013)ADSCrossRefGoogle Scholar
  25. R. Ertsey, C.J. Chapin, J.A. Kitterman, L.M. Scavo, Ontogeny of poly(ADP-ribose) polymerase-1 in lung and developmental implications. Am. J. Respir. Cell Mol. Biol. 30(6), 853–861 (2004)CrossRefGoogle Scholar
  26. T.M. Filion, M. Qiao, P.N. Ghule, M. Mandeville, A.J. van Wijnen, J.L. Stein, J.B. Lian, D.C. Altieri, G.S. Stein, Survival responses of human embryonic stem cells to DNA damage. J. Cell. Physiol. 220(3), 586–592 (2009)CrossRefGoogle Scholar
  27. P. Fortini, C. Ferretti, E. Dogliotti, The response to DNA damage during differentiation: pathways and consequences. Mutat. Res. 743–744, 160–168 (2013)CrossRefGoogle Scholar
  28. P. Fortini, C. Ferretti, B. Pascucci, L. Narciso, D. Pajalunga, E.M. Puggioni, R. Castino, C. Isidoro, M. Crescenzi, E. Dogliotti, DNA damage response by single-strand breaks in terminally differentiated muscle cells and the control of muscle integrity. Cell Death Differ. 19(11), 1741–1749 (2012)CrossRefGoogle Scholar
  29. S. Francia, F. Michelini, A. Saxena, D. Tang, M. de Hoon, V. Anelli, M. Mione, P. Carninci, F. d’Adda di Fagagna, Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488(7410), 231–235 (2012)ADSCrossRefGoogle Scholar
  30. E.C. Friedberg, A. Aguilera, M. Gellert, P.C. Hanawalt, J.B. Hays, A.R. Lehmann, T. Lindahl, N. Lowndes, A. Sarasin, R.D. Wood, DNA repair: from molecular mechanism to human disease. DNA Repair (Amst) 5(8), 986–996 (2006)CrossRefGoogle Scholar
  31. E.C. Friedberg, L.B. Meira, Database of mouse strains carrying targeted mutations in genes affecting biological responses to DNA damage Version 7. DNA Repair (Amst) 5(2), 189–209 (2006)CrossRefGoogle Scholar
  32. G. Frosina, The bright and the dark sides of DNA repair in stem cells. J. Biomed. Biotechnol. 2010, 845396 (2010)CrossRefGoogle Scholar
  33. C. Giachino, L. Orlando, V. Turinetto, Maintenance of genomic stability in mouse embryonic stem cells: relevance in aging and disease. Int. J. Mol. Sci. 14(2), 2617–2636 (2013)CrossRefGoogle Scholar
  34. R.D. Goldman, D.K. Shumaker, M.R. Erdos, M. Eriksson, A.E. Goldman, L.B. Gordon, Y. Gruenbaum, S. Khuon, M. Mendez, R. Varga, F.S. Collins, Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 101(24), 8963–8968 (2004)ADSCrossRefGoogle Scholar
  35. L.W.E. Gong, S.Y. Lin, Chromatin Remodeling in DNA Damage Response and Human Aging. Licensee InTech, 2013Google Scholar
  36. B. Hamilton, Y. Dong, M. Shindo, W. Liu, I. Odell, G. Ruvkun, S.S. Lee, A systematic RNAi screen for longevity genes in C. elegans. Genes Dev. 19(13), 1544–1555 (2005)CrossRefGoogle Scholar
  37. S. Han, A. Brunet, Histone methylation makes its mark on longevity. Trends Cell Biol. 22(1), 42–49 (2012)CrossRefGoogle Scholar
  38. M. Hansen, S. Taubert, D. Crawford, N. Libina, S.J. Lee, C. Kenyon, Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6(1), 95–110 (2007)CrossRefGoogle Scholar
  39. D. Harman, Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11(3), 298–300 (1956)CrossRefGoogle Scholar
  40. D. Harman, Free radical theory of aging. Triangle 12(4), 153–158 (1973)Google Scholar
  41. J. Hendrey, D. Lin, M. Dziadek, Developmental analysis of the Hba(th-J) mouse mutation: effects on mouse peri-implantation development and identification of two candidate genes. Dev. Biol. 172(1), 253–263 (1995)CrossRefGoogle Scholar
  42. B.S. Heyer, A. MacAuley, O. Behrendtsen, Z. Werb, Hypersensitivity to DNA damage leads to increased apoptosis during early mouse development. Genes Dev. 14(16), 2072–2084 (2000)Google Scholar
  43. P.H. Hsu, P.C. Hanawalt, T. Nouspikel, Nucleotide excision repair phenotype of human acute myeloid leukemia cell lines at various stages of differentiation. Mutat. Res. 614(1–2), 3–15 (2007)CrossRefGoogle Scholar
  44. T. Hirano, Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1455), 507–514 (2005). SMC proteins and chromosome mechanics: from bacteria to humansGoogle Scholar
  45. S.M. Ishita, M. Kulashreshtha, S. Chakraborty, U. Kolthur-Seetharam, B.J. Rao, Chromosome territories reposition during DNA damage-repair response. Genome Biol. 14(12), R135 (2013)Google Scholar
  46. T. Iyama, D.M. Wilson 3rd, DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst) 12(8), 620–636 (2013)CrossRefGoogle Scholar
  47. P. Jacquet, Developmental defects and genomic instability after x-irradiation of wild-type and genetically modified mouse pre-implantation and early post-implantation embryos. J. Radiol. Prot. 32(4), R13–R36 (2012)CrossRefGoogle Scholar
  48. S. Jaroudi, S. SenGupta, DNA repair in mammalian embryos. Mutat. Res. 635(1), 53–77 (2007)CrossRefGoogle Scholar
  49. A. Jurisicova, K.E. Latham, R.F. Casper, R.F. Casper, S.L. Varmuza, Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol. Reprod. Dev. 51(3), 243–253 (1998)CrossRefGoogle Scholar
  50. J. Kanungo, R.S. Cameron, Y. Takeda, J.A. Hardin, DNA-dependent protein phosphorylation activity in Xenopus is coupled to a Ku-like protein. Biol. Bull. 193(2), 147–152 (1997)CrossRefGoogle Scholar
  51. J. Kenyon, S.L. Gerson, The role of DNA damage repair in aging of adult stem cells. Nucleic Acids Res. 35(22), 7557–7565 (2007)CrossRefGoogle Scholar
  52. C. Khan, S. Muliyil, C. Ayyub, B.J. Rao, The initiator caspase Dronc plays a non-apoptotic role in promoting DNA damage signalling in D. melanogaster. J. Cell Sci. 130(18), 2984–2995 (2017). Epub 2017 Jul 27
  53. T.B. Kirkwood, Evolution of ageing. Nature 270(5635), 301–304 (1977)ADSCrossRefGoogle Scholar
  54. T.B. Kirkwood, Systems biology of ageing and longevity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1561), 64–70 (2011)CrossRefGoogle Scholar
  55. J. Kristian, T. Kanno, K. Shirahige, C. Sjögren, The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat. Rev. Mol. Cell Biol. 15, 601–614 (2014)Google Scholar
  56. I.I. Kruman, Why do neurons enter the cell cycle? Cell Cycle 3(6), 769–773 (2004)CrossRefGoogle Scholar
  57. A. Kulkarni, D.R. McNeill, M. Gleichmann, M.P. Mattson, D.M. Wilson 3rd, XRCC1 protects against the lethality of induced oxidative DNA damage in nondividing neural cells. Nucleic Acids Res. 36(15), 5111–5121 (2008)CrossRefGoogle Scholar
  58. A. Lal, Y. Pan, F. Navarro, D.M. Dykxhoorn, L. Moreau, E. Meire, Z. Bentwich, J. Lieberman, D. Chowdhury, miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat. Struct. Mol. Biol. 16(5), 492–498 (2009)CrossRefGoogle Scholar
  59. K. Larson, S.J. Yan, A. Tsurumi, J. Liu, J. Zhou, K. Gaur, D. Guo, T.H. Eickbush, W.X. Li, Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet. 8(1), e1002473 (2012)CrossRefGoogle Scholar
  60. H.M. Lee, Z. Hu, H. Ma, G.H. Greeley Jr., C. Wang, E.W. Englander, Developmental changes in expression and subcellular localization of the DNA repair glycosylase, MYH, in the rat brain. J. Neurochem. 88(2), 394–400 (2004)CrossRefGoogle Scholar
  61. Y. Lee, S. Katyal, Y. Li, S.F. El-Khamisy, H.R. Russell, K.W. Caldecott, P.J. McKinnon, The genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1. Nat. Neurosci. 12(8), 973–980 (2009)CrossRefGoogle Scholar
  62. E. Lieberman-Aiden, N.L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling, I. Amit, B.R. Lajoie, P.J. Sabo, M.O. Dorschner et al., Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009)ADSCrossRefGoogle Scholar
  63. G.A. Lisa, The fractal geometry of life. Riv. Biol. 102, 29–59 (2009)Google Scholar
  64. E. Lukasova, Z. Koristek, M. Klabusay, V. Ondrej, S. Grigoryev, A. Bacikova, M. Rezacova, M. Falk, J. Vavrova, V. Kohutova, S. Kozubek, Granulocyte maturation determines ability to release chromatin NETs and loss of DNA damage response; these properties are absent in immature AML granulocytes. Biochim. Biophys. Acta 1833(3), 767–779 (2013)CrossRefGoogle Scholar
  65. P.K. Mandal, C. Blanpain, D.J. Rossi, DNA damage response in adult stem cells: pathways and consequences. Nat. Rev. Mol. Cell Biol. 12(3), 198–202 (2011)CrossRefGoogle Scholar
  66. B.B. Mandelbrot, Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proc. Natl. Acad. Sci. USA 72, 3825–3828 (1975)ADSMathSciNetCrossRefGoogle Scholar
  67. C. Mantel, Y. Guo, M.R. Lee, M.K. Kim, M.K. Han, H. Shibayama, S. Fukuda, M.C. Yoder, L.M. Pelus, K.S. Kim, H.E. Broxmeyer, Checkpoint-apoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability. Blood 109(10), 4518–4527 (2007)CrossRefGoogle Scholar
  68. C. Marietta, F. Palombo, P. Gallinari, J. Jiricny, P.J. Brooks, Expression of long-patch and short-patch DNA mismatch repair proteins in the embryonic and adult mammalian brain. Brain Res. Mol. Brain Res. 53(1–2), 317–320 (1998)CrossRefGoogle Scholar
  69. K. Marinoglou, The role of the DNA damage response kinase ataxia telangiectasia mutated in neuroprotection. Yale J. Biol. Med. 85(4), 469–480 (2012)Google Scholar
  70. A. Meulle, B. Salles, D. Daviaud, P. Valet, C. Muller, Positive regulation of DNA double strand break repair activity during differentiation of long life span cells: the example of adipogenesis. PLoS ONE 3(10), e3345 (2008)ADSCrossRefGoogle Scholar
  71. T. Misteli, Higher-order genome organization in human disease. Cold Spring Harb. Perspect. Biol. 2, a000794 (2010)CrossRefGoogle Scholar
  72. O. Momcilovic, S. Choi, S. Varum, C. Bakkenist, G. Schatten, C. Navara, Ionizing radiation induces ataxia telangiectasia mutated-dependent checkpoint signaling and G(2) but not G(1) cell cycle arrest in pluripotent human embryonic stem cells. Stem Cells 27(8), 1822–1835 (2009)CrossRefGoogle Scholar
  73. O. Momcilovic, L. Knobloch, J. Fornsaglio, S. Varum, C. Easley, G. Schatten, DNA damage responses in human induced pluripotent stem cells and embryonic stem cells. PLoS ONE 5(10), e13410 (2010)ADSCrossRefGoogle Scholar
  74. R. Mudhasani, Z. Zhu, G. Hutvagner, C.M. Eischen, S. Lyle, L.L. Hall, J.B. Lawrence, A.N. Imbalzano, S.N. Jones, Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J. Cell Biol. 181(7), 1055–1063 (2008)CrossRefGoogle Scholar
  75. K. Mugdha, I.S. Mehta, P. Kumar, B.J. Rao, Chromosome territory relocation during DNA repair requires nuclear myosin1β recruitment to chromatin mediated by Υ-H2AX signaling. Nucleic Acids Research 2016 Jun 30. pii: gkw573Google Scholar
  76. P. Nagaria, C. Robert, F.V. Rassool, DNA double-strand break response in stem cells: mechanisms to maintain genomic integrity. Biochimica et Biophysica Acta (BBA)—Gen. Subj. 1830(2), 2345–2353 (2013)Google Scholar
  77. L. Narciso, P. Fortini, D. Pajalunga, A. Franchitto, P. Liu, P. Degan, M. Frechet, B. Demple, M. Crescenzi, E. Dogliotti, Terminally differentiated muscle cells are defective in base excision DNA repair and hypersensitive to oxygen injury. Proc. Natl. Acad. Sci. USA 104(43), 17010–17015 (2007)ADSCrossRefGoogle Scholar
  78. T. Nouspikel, DNA repair in differentiated cells: some new answers to old questions. Neuroscience 145(4), 1213–1221 (2007)CrossRefGoogle Scholar
  79. T. Nouspikel, DNA repair in mammalian cells: Nucleotide excision repair: variations on versatility. Cell. Mol. Life Sci. 66(6), 994–1009 (2009a)CrossRefGoogle Scholar
  80. T. Nouspikel, DNA repair in mammalian cells: So DNA repair really is that important? Cell. Mol. Life Sci. 66(6), 965–967 (2009b)CrossRefGoogle Scholar
  81. T. Nouspikel, P.C. Hanawalt, Terminally differentiated human neurons repair transcribed genes but display attenuated global DNA repair and modulation of repair gene expression. Mol. Cell. Biol. 20(5), 1562–1570 (2000)CrossRefGoogle Scholar
  82. T. Nouspikel, P.C. Hanawalt, DNA repair in terminally differentiated cells. DNA Repair (Amst) 1(1), 59–75 (2002a)CrossRefGoogle Scholar
  83. T. Nouspikel, P.C. Hanawalt, DNA repair in terminally differentiated cells. DNA Repair 1(1), 59–75 (2002b)CrossRefGoogle Scholar
  84. T. Nouspikel, P.C. Hanawalt, Impaired nucleotide excision repair upon macrophage differentiation is corrected by E1 ubiquitin-activating enzyme. Proc. Natl. Acad. Sci. USA 103(44), 16188–16193 (2006)ADSCrossRefGoogle Scholar
  85. T.P. Nouspikel, N. Hyka-Nouspikel, P.C. Hanawalt, Transcription domain-associated repair in human cells. Mol. Cell. Biol. 26(23), 8722–8730 (2006)CrossRefGoogle Scholar
  86. L. Oliver, E. Hue, Q. Sery, A. Lafargue, C. Pecqueur, F. Paris, F.M. Vallette, Differentiation-related response to DNA breaks in human mesenchymal stem cells. Stem Cells 31(4), 800–807 (2013)CrossRefGoogle Scholar
  87. T.R. Ozolins, B.F. Hales, Oxidative stress regulates the expression and activity of transcription factor activator protein-1 in rat conceptus. J. Pharmacol. Exp. Ther. 280(2), 1085–1093 (1997)Google Scholar
  88. B.F. Pachkowski, K.Z. Guyton, B. Sonawane, DNA repair during in utero development: a review of the current state of knowledge, research needs, and potential application in risk assessment. Mutat. Res. 728(1–2), 35–46 (2011)CrossRefGoogle Scholar
  89. S. Pampfer, C. Streffer, Increased chromosome aberration levels in cells from mouse fetuses after zygote X-irradiation. Int. J. Radiat. Biol. 55(1), 85–92 (1989)CrossRefGoogle Scholar
  90. K.Z. Pan, J.E. Palter, A.N. Rogers, A. Olsen, D. Chen, G.J. Lithgow, P. Kapahi, Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6(1), 111–119 (2007)CrossRefGoogle Scholar
  91. G. Pegoraro, N. Kubben, U. Wickert, H. Gohler, K. Hoffmann, T. Misteli, Ageing-related chromatin defects through loss of the NURD complex. Nat. Cell Biol. 11(10), 1261–1267 (2009)CrossRefGoogle Scholar
  92. G. Pegoraro, T. Misteli, The central role of chromatin maintenance in aging. Aging (Albany NY) 1(12), 1017–1022 (2009)CrossRefGoogle Scholar
  93. P. Ramos-Espinosa, E. Rojas, M. Valverde, Differential DNA damage response to UV and hydrogen peroxide depending of differentiation stage in a neuroblastoma model. Neurotoxicology 33(5), 1086–1095 (2012)CrossRefGoogle Scholar
  94. E. Rass, G. Chandramouly, S. Zha, F.W. Alt, A. Xie, Ataxia telangiectasia mutated (ATM) is dispensable for endonuclease I-SceI-induced homologous recombination in mouse embryonic stem cells. J. Biol. Chem. 288(10), 7086–7095 (2013)CrossRefGoogle Scholar
  95. L.L. Richardson, C. Pedigo, M. Ann Handel, Expression of deoxyribonucleic acid repair enzymes during spermatogenesis in mice. Biol. Reprod. 62(3), 789–796 (2000)CrossRefGoogle Scholar
  96. B. Riis, L. Risom, S. Loft, H.E. Poulsen, Increased rOGG1 expression in regenerating rat liver tissue without a corresponding increase in incision activity. DNA Repair (Amst) 1(5), 419–424 (2002)CrossRefGoogle Scholar
  97. P.M. Rodrigues, P. Grigaravicius, M. Remus, G.R. Cavalheiro, A.L. Gomes, M.R. Martins, L. Frappart, D. Reuss, P.J. McKinnon, A. von Deimling, R.A. Martins, P.O. Frappart, Nbn and atm cooperate in a tissue and developmental stage-specific manner to prevent double strand breaks and apoptosis in developing brain and eye. PLoS ONE 8(7), e69209 (2013)ADSCrossRefGoogle Scholar
  98. S.L. Rulten, K.W. Caldecott, DNA strand break repair and neurodegeneration. DNA Repair (Amst) 12(8), 558–567 (2013)CrossRefGoogle Scholar
  99. N.F.* Sarosh, I.S. Mehta, B.J. Rao*, Spatial arrangement of chromosomes in human interphase nuclei is self-organized by inter-chromosomal systemic couplings. Nat. Sci. Rep. 6, 36819 (2016).
  100. P. Scaffidi, T. Misteli, Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat. Med. 11(4), 440–445 (2005)CrossRefGoogle Scholar
  101. P. Scaffidi, T. Misteli, Lamin A-dependent nuclear defects in human aging. Science 312(5776), 1059–1063 (2006)ADSCrossRefGoogle Scholar
  102. S. Schmetsdorf, E. Arnold, M. Holzer, T. Arendt, U. Gartner, A putative role for cell cycle-related proteins in microtubule-based neuroplasticity. Eur. J. Neurosci. 29(6), 1096–1107 (2009)CrossRefGoogle Scholar
  103. L. Schneider, M. Fumagalli, F. d’Adda di Fagagna, Terminally differentiated astrocytes lack DNA damage response signaling and are radioresistant but retain DNA repair proficiency. Cell Death Differ. 19(4), 582–591 (2012)CrossRefGoogle Scholar
  104. N. Schuler, C.E. Rube, Accumulation of DNA damage-induced chromatin alterations in tissue-specific stem cells: the driving force of aging? PLoS ONE 8(5), e63932 (2013)ADSCrossRefGoogle Scholar
  105. E.I. Schwartz, L.B. Smilenov, M.A. Price, T. Osredkar, R.A. Baker, S. Ghosh, F.D. Shi, T.L. Vollmer, A. Lencinas, D.M. Stearns, M. Gorospe, II. Kruman, Cell cycle activation in postmitotic neurons is essential for DNA repair. Cell Cycle 6(3), 318–329 (2007)Google Scholar
  106. M.H. Sherman, A.I. Kuraishy, C. Deshpande, J.S. Hong, N.A. Cacalano, R.A. Gatti, J.P. Manis, M.A. Damore, M. Pellegrini, M.A. Teitell, AID-induced genotoxic stress promotes B cell differentiation in the germinal center via ATM and LKB1 signaling. Mol. Cell 39(6), 873–885 (2010)CrossRefGoogle Scholar
  107. D.K. Shumaker, T. Dechat, A. Kohlmaier, S.A. Adam, M.R. Bozovsky, M.R. Erdos, M. Eriksson, A.E. Goldman, S. Khuon, F.S. Collins, T. Jenuwein, R.D. Goldman, Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl. Acad. Sci. USA 103(23), 8703–8708 (2006)ADSCrossRefGoogle Scholar
  108. M. Simonatto, L. Giordani, F. Marullo, G.C. Minetti, P.L. Puri, L. Latella, Coordination of cell cycle, DNA repair and muscle gene expression in myoblasts exposed to genotoxic stress. Cell Cycle. 10(14), 2355–2363 (2011)CrossRefGoogle Scholar
  109. M. Simonatto, F. Marullo, F. Chiacchiera, A. Musaro, J.Y. Wang, L. Latella, P.L. Puri, DNA damage-activated ABL-MyoD signaling contributes to DNA repair in skeletal myoblasts. Cell Death Differ. 20(12), 1664–1674 (2013)CrossRefGoogle Scholar
  110. P. Sykora, D.M. Wilson 3rd, V.A. Bohr, Base excision repair in the mammalian brain: Implication for age related neurodegeneration. Mech. Ageing Dev. 134(10), 440–448 (2013a)CrossRefGoogle Scholar
  111. P. Sykora, J.L. Yang, L.K. Ferrarelli, J. Tian, T. Tadokoro, A. Kulkarni, L. Weissman, G. Keijzers, D.M. Wilson 3rd, M.P. Mattson, V.A. Bohr, Modulation of DNA base excision repair during neuronal differentiation. Neurobiol. Aging 34(7), 1717–1727 (2013b)CrossRefGoogle Scholar
  112. A. Tedeschi, S. Di Giovanni, The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Rep. 10(6), 576–583 (2009)CrossRefGoogle Scholar
  113. C. Thamrin, G. Stern, U. Frey, Fractals for physicians. Paediatr. Respir. Rev. 11, 123–131 (2010)CrossRefGoogle Scholar
  114. E.D. Tichy, R. Pillai, L. Deng, L. Liang, J. Tischfield, S.J. Schwemberger, G.F. Babcock, P.J. Stambrook, Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks. Stem Cells Dev. 19(11), 1699–1711 (2010)CrossRefGoogle Scholar
  115. A. Tomashevski, D.R. Webster, P. Grammas, M. Gorospe, I.I. Kruman, Cyclin-C-dependent cell-cycle entry is required for activation of non-homologous end joining DNA repair in postmitotic neurons. Cell Death Differ. 17(7), 1189–1198 (2010)CrossRefGoogle Scholar
  116. R.K. Vinson, B.F. Hales, Expression of base excision, mismatch, and recombination repair genes in the organogenesis-stage rat conceptus and effects of exposure to a genotoxic teratogen, 4-hydroperoxycyclophosphamide. Teratology 64(6), 283–291 (2001a)CrossRefGoogle Scholar
  117. R.K. Vinson, B.F. Hales, Nucleotide excision repair gene expression in the rat conceptus during organogenesis. Mutat. Res. 486(2), 113–123 (2001b)CrossRefGoogle Scholar
  118. R.K. Vinson, B.F. Hales, DNA repair during organogenesis. Mutat. Res. 509(1–2), 79–91 (2002)CrossRefGoogle Scholar
  119. D. Wells, M.G. Bermudez, N. Steuerwald, A.R. Thornhill, D.L. Walker, H. Malter, J.D. Delhanty, J. Cohen, Expression of genes regulating chromosome segregation, the cell cycle and apoptosis during human preimplantation development. Hum. Reprod. 20(5), 1339–1348 (2005)CrossRefGoogle Scholar
  120. G. Xu, G. Spivak, D.L. Mitchell, T. Mori, J.R. McCarrey, C.A. McMahan, R.B. Walter, P.C. Hanawalt, C.A. Walter, Nucleotide excision repair activity varies among murine spermatogenic cell types. Biol. Reprod. 73(1), 123–130 (2005)CrossRefGoogle Scholar
  121. P. Zheng, R.D. Schramm, K.E. Latham, Developmental regulation and in vitro culture effects on expression of DNA repair and cell cycle checkpoint control genes in rhesus monkey oocytes and embryos. Biol. Reprod. 72(6), 1359–1369 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Tata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations