Skip to main content

Topological Foundations of Physics

  • Chapter
  • First Online:
The Map and the Territory

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Topology and geometry have played an important role in our theoretical understanding of quantum field theories. One of the most interesting applications of topology has been the quantization of certain coupling constants. In this paper, we present a general framework for understanding the quantization itself in the light of group cohomology. This analysis of the cohomological aspects of physics leads to reconsider the very foundations of mechanics in a new light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This of course is another matter and not our topic here. However, it is important to recognise that the significance of non-abelian gauge theories was revived with the proof given by the renormalisation of non-abeliennes gauge theories by Hooft (1971, 1994) and Hooft and Veltman (1972) (1971–72). This lead to the resurrection of previous papers on the subject and of the standard theory with the gauge group SU(2)xU(1) electromagnetic and weak interactions and also of quantum chronodynamics (QCD) with the gauge group SU(3), the preferred model in confining quarks that are considered responsible for strong interactions.

  2. 2.

    Listing was the first to use the term Topology (actually he used Topologie for he wrote in German) in a letter to a friend in 1836 see Pont (1974), and Listing (1847, 1861). Remark that the term Topology was not commonly present in literature prior to the 1920s (instead we find the Latin terms geometria situs and analysis situs). The first important use of a topological argument could be argued to go back as far as Euler’s solution (Euler 1736) to Konigsberg’s bridge problem in 1736. During the elaboration of his answer, Euler had the idea to associate a graph to the problem giving birth to what we now call graph theory and so, with this example, he presented one of the first combinatorial topological problems. Today graph theory is a subject in its own right.

  3. 3.

    The homology appeared as a redoubling of abstraction; The homological forms have doubled the algebra of the geometric forms which they enveloped. We can distinguish quite clearly two movements: a birth of geometry or algebra followed by homological stabilization. From a logical point of view, a geometric object and an homological object have the same nature.

  4. 4.

    We note sometimes this sequence as (\(M_*, \partial _*)\) (or \(M_*,d_*\)).

  5. 5.

    Usually the non vanishing of a cohomology class in algebra, geometry, and topology, express some “failure”. Indeed, Often in math you wish something were true, but in general it is not. But, the quantification of how badly it fails, help us towards finding out a more precise statement that holds generally. The size (or dimension) of the corresponding cohomology group is a measurement of how many ways things can go wrong. If it is nice or if you can understand it completely, then you may be able to analyze all the possible failure modes exhaustively, and use that to prove something interesting. This idea can be applied in an amazingly broad set of contexts. This explain in some way the use of Cohomology to describe quantization.

  6. 6.

    In deciding to extend the concepts of homology and cohomology outside the ideal world of mathematics, We are led to accept the use of some analogies. In physics as in mathematics, a universal concept of homological object does not exist.

  7. 7.

    W. S. Massey (1920) listed five definitions of fibre space (Massey 1999): (a) fibre bundles in the American sense (Steenrod 1951); (b) fibre spaces in the sense of Ehresmann and Feldbau (Ehresmann 1934; Feldbau 1939; c) fibre spaces as defined by the French school (Cartan 1956; d) fibre spaces in the sense of Hurewicz and Steenrod (Steenrod 1951), and (e) fibre spaces in the sense of Serre (1951). Each of these competing definitions developed out of a mix of examples and problems of interest to the research community in topology, often marked by a national character. We will consider the origins of each of these strands and the relations among them.

  8. 8.

    Also, they should be square integrable in an appropriate sense. This requires discussing how we equip the space of sections with a Hilbert space structure and what measure we integrate against.

  9. 9.

    The cycles carried by a surface \(\Sigma \) are formal combinations of manifolds of dimension 3 bordered by \(\Sigma \); The partition function Z defines a form of intersection on cycles and homology occurs when we quotient by the kernel of this form.

References

  • M.F. Atiyah, Geometry of Yang-Mills fields (Lezioni Fermiane Academia Nationale dei Lincei & Scuola Normale Superiore, Pisa, 1979)

    MATH  Google Scholar 

  • D. Bennequin, Théories quantiques et fibrations, dans Vers une nouvelle philosophie de la nature, ed. by J. Kouneiher (Hermann, 2010)

    Google Scholar 

  • H. Cartan, S. Eilenberg, Homological Algebra (Princeton University Press, 1956)

    Google Scholar 

  • P.A.M. Dirac, The relation between mathematics and physics, in Proceedings of the Royal Society (Edinburgh) vol. 59, 1938–39, Part II pp. 122–129

    Google Scholar 

  • J. Anandan, Causality, symmetries and quantum mechanics. Found. Phy. Lett. 15, 5 (2002)

    Google Scholar 

  • Ch. Ehresmann, Œuvres complètes et commentées. I-1,2. Topologie algébrique et géométrie différentielle ed. by Andrée Charles Ehresmann. Cahiers Topologie 14, Géom. Différentielle 24(1983), suppl. 1, xxix+601 pp

    Google Scholar 

  • Ch. Ehresmann, Sur la topologie de certains espaces homogénes. Ann. Math. 35, 396–443 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  • Ch. Ehresmann, J. Feldbau, Sur les propriétés d’homotopie des espaces fibrés. C.R. Acad. Sci. Paris 212, 945–948 (1941)

    Google Scholar 

  • S. Eilenberg, N. Steenrod, Foundations Of Algebraic Topology (Princeton Legacy Librairy, 2011)

    Google Scholar 

  • L. Euler, Solutio problematis ad geometriam situs pertinentis, Commentarii Academiae Scientiarum Imperialis Petropolitanae, 8, 128–140 (1736)

    Google Scholar 

  • J. Feldbau, Sur la classification des espaces fibrs. C. R. Acad. Sci. Paris. 208, 1621–1623 (1939)

    MATH  Google Scholar 

  • J. Giraud, Cohomologie non ablienne, Grundlehren 179 (Springer, 1971)

    Google Scholar 

  • A. Herreman, Le, statut de la géométrie dans quelques textes sur lhomologie, de Poincaré aux années 1930. Revue dHistoire des Mathmatiques. 3, 241–293 (1997)

    MathSciNet  MATH  Google Scholar 

  • G. Kirchhoff, Ueber die Aufl osung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanisher Ströme gefürt wird. Ann. der Physik und Chemie 72, 497–508 (1847)

    Article  ADS  Google Scholar 

  • A.A. Kirillov, Elements of the Theory of Representations (Springer, Berlin, Heidelberg, New York, 1976)

    Book  MATH  Google Scholar 

  • B. Kostant, Quantization and Unitary Representations. Lecture Notes in Mathematics, vol. 170 (Springer, Berlin, 1976)

    Google Scholar 

  • J. Kouneiher, Symétrie et fondements de la Physique, l’aspect Cohomologique de la Physique, in Vers une Nouvelle Philosophie de la Nature, ed. by J. Kouneiher (Hermann edition, 2010)

    Google Scholar 

  • J. Kouneiher, Asymmetric, Pointless and Relational Space: Leibnizs Legacy Today: Leibniz and the Dialogue between Sciences, Philosophy and Engineering, 1646-2016. New Historical and Epistemological Insights, ed. by R. Pisano, M. Fichant, P. Bussotti, A.R.E. Oliveira (The Colleges Publications, London, 2017)

    Google Scholar 

  • J. Leray, L’homologie d’un espace fibré, dont la fibre est connexe. J. Math. Pures et Appl. 29, 169–213 (1950)

    MathSciNet  MATH  Google Scholar 

  • J.B. Listing, Vorstudien zur Topologie, Gttinger Studien, 811–875 (1847)

    Google Scholar 

  • J.B. Listing, Der Census rumlicher Complexe oder Veallgemeinerung des Euler’schen Satzes von den Polyedern, Gttingen, 97–180 (1861)

    Google Scholar 

  • W. Massey, A history of cohomology theory, in History of Topology, ed. by I.M. James (Elsevier, Amsterdam, 1999)

    Google Scholar 

  • J.C. Maxwell, It A Treatise on Electricity and Magnetism, vol. I and vol II (1873), 3 edn. (Oxford University Press, 1904)

    Google Scholar 

  • H. Poincaré, Analysis situs. J. Sec. Polyt. 1, 1–121 (1895)

    Google Scholar 

  • H. Poincaré, Sur la connexion des surfaces algébriques. C. R. Acad. Sc. 133, 969–973 (1901)

    MATH  Google Scholar 

  • H. Poincaré, Sur les cycles des surfaces algébriques; quatrième complement a l’Analysis situs. J. Math. pures et appl. 8, 169–214 (1902)

    Google Scholar 

  • J.-C. Pont, La topologie algèbrique des origines à Poincaré (Presses Universitaires de France, 1974)

    Google Scholar 

  • T. Schaefer, E. Shuryak, Instantons in QCD. Rev. Mod. Phys. 70, 323–426 (1998). arXiv:hep-ph/9610451

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • H. Seifert, Topologie dreidimensionaler geschlossener Rume. Acta Math. 60, 147–238 (1932)

    Article  Google Scholar 

  • J.-P. Serre, Homologie singulire des espaces fibrs. Applications. Ann. of Math. 54, 425–505 (1951)

    Google Scholar 

  • U. Schreiber, What quantization, see (https://physics.stackexchange.com/users/5603/urs-schreiber)

  • J.M. Souriau, Structures des systemes dynamiques (Dunod, Paris, 1970)

    MATH  Google Scholar 

  • N. Steenrod, The Topology of Fiber Bundles (Princeton, 1951)

    Google Scholar 

  • G. ’t Hooft, Renormalization of massless Yang–Mills fields. Nucl. Phys. B 33, 173–199 (1971)

    Google Scholar 

  • G. ’t Hooft, Under the spell of the gauge principle, in Advanced Series in Mathematical Physics, vol. 19 (World Scientific, 1994)

    Google Scholar 

  • G. ’t Hooft, M. Veltman, Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972)

    Google Scholar 

  • H. Whitney, Sphere spaces. Proc. Natl. Acad. Sci. USA 21, 464–468 (1935). https://doi.org/10.1073/pnas.21.7.464

  • H. Whitney, On the theory of sphere bundles. Proc. Natl. Acad. Sci. USA 26, 1481–53 (1940). https://doi.org/10.1073/pnas.26.2.148

Download references

Acknowledgements

For the invitation to contribute to this volume and for discussion I thank Shyam Wuppuluri.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Kouneiher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kouneiher, J. (2018). Topological Foundations of Physics. In: Wuppuluri, S., Doria, F. (eds) The Map and the Territory. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-72478-2_13

Download citation

Publish with us

Policies and ethics