Skip to main content

Diabetes, Non-Enzymatic Glycation, and Aging

  • Chapter
  • First Online:
Dermatology and Diabetes

Abstract

First described in the context of diabetes, advanced glycation end products (AGEs) are formed through a type of non-enzymatic reaction called glycation. Protein glycation and formation of advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy, cardiomyopathy along with some other diseases such as rheumatoid arthritis, osteoporosis, and, recently, skin aging. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, and interfering with receptor functioning. AGEs form intra- and extracellular cross linking not only with proteins, but with some other endogenous key molecules including lipids and nucleic acids to contribute in the development of diabetic complications. Recent studies suggest that AGEs interact with plasma membrane localized receptors for AGEs (RAGE) to alter intracellular signaling, gene expression, release of pro-inflammatory molecules and free radicals. Characteristic findings of aging skin, including decreased resistance to mechanical stress, impaired wound healing, and distorted dermal vasculature, can be in part attributable to glycation. Multiple factors mediate cutaneous senescence, and these factors are generally characterized as endogenous (e.g., telomere shortening) or exogenous (e.g., ultraviolet radiation exposure). Interestingly, AGEs exert their pathophysiological effects from both endogenous and exogenous routes. The former entails the consumption of sugar in the diet, which then covalently binds an electron from a donor molecule to form an AGE. The latter process mostly refers to the formation of AGEs through cooking. Results of several studies in animal models and humans show that the restriction of dietary AGEs has positive effects on wound healing, insulin resistance and cardiovascular diseases. Recently, the effect of restriction in AGEs intake has been reported to increase the lifespan in animal models. Recent studies have revealed that certain methods of food preparation (i.e. grilling, frying, and roasting) produce much higher levels of AGEs than water-based cooking methods such as boiling and steaming. Moreover, several dietary compounds have emerged as promising candidates for the inhibition of glycation-mediated aging. In this chapter, we summarize the evidence supporting the critical role of glycation in skin aging and highlight preliminary studies on dietary strategies that may be able to combat this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen HP, Katta R. Sugar sag: glycation and the role of diet in aging skin. Skin Ther Lett. 2015;20(6):1–5.

    CAS  Google Scholar 

  2. Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65(9):963–75.

    Article  PubMed  CAS  Google Scholar 

  3. Tosato M, Zamboni V, Ferrini A, Cesari M. The aging process and potential interventions to extend life expectancy. Clin Interv Aging. 2007;2:401–12.

    PubMed  PubMed Central  Google Scholar 

  4. Zouboulis CC, Boschnakow A. Chronological ageing and photoageing of the human sebaceous gland. Clin Exp Dermatol. 2001;26(7):600–7.

    Article  CAS  PubMed  Google Scholar 

  5. Elias PM, Ghadially R. The aged epidermal permeability barrier: basis for functional abnormalities. Clin Geriatr Med. 2002;18(1):103–20.

    Article  PubMed  Google Scholar 

  6. Ye J, Garg A, Calhoun C, et al. Alterations in cytokine regulation in aged epidermis: implications for permeability barrier homeostasis and inflammation. I. IL-1 gene family. Exp Dermatol. 2002;11(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  7. Tsutsumi M, Denda M. Paradoxical effects of beta-estradiol on epidermal permeability barrier homeostasis. Br J Dermatol. 2007;157(4):776–9.

    Article  CAS  PubMed  Google Scholar 

  8. Fimmel S, Kurfurst R, Bonte F, et al. Responsiveness to androgens and effectiveness of antisense oligonucleotides against the androgen receptor on human epidermal keratinocytes is dependent on the age of the donor and the location of cell origin. Horm Metab Res. 2007;39(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  9. Makrantonaki E, Vogel K, Fimmel S, et al. Interplay of IGF-I and 17betaestradiol at age-specific levels in human sebocytes and fibroblasts in vitro. Exp Gerontol. 2008;43(10):939–46.

    Article  CAS  PubMed  Google Scholar 

  10. Ashcroft GS, Horan MA, Ferguson MW. The effects of ageing on wound healing: immunolocalisation of growth factors and their receptors in a murine incisional model. J Anat. 1997;190(Pt 3):351–65.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bhushan M, Cumberbatch M, Dearman RJ, et al. Tumour necrosis factoralpha-induced migration of human Langerhans cells: the influence of ageing. Br J Dermatol. 2002;146(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  12. Zouboulis CC, Makrantonaki E. Clinical aspects and molecular diagnostics of skin aging. Clin Dermatol. 2011;29(1):3–14.

    Article  PubMed  Google Scholar 

  13. Chung JH, Yano K, Lee MK, et al. Differential effects of photoaging vs intrinsic aging on the vascularization of human skin. Arch Dermatol. 2002;138(11):1437–42.

    Article  PubMed  Google Scholar 

  14. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O’Keefe JH, Brand-Miller J. Origins and evolution of the western diet: health implications for the 21st century. Am J Clin Nutr. 2005;81:341–54.

    Article  CAS  PubMed  Google Scholar 

  15. Rahbar S, Blumenfe O, Ranney HM. Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochem Biophys Res Commun. 1969;36:838–43.

    Article  CAS  PubMed  Google Scholar 

  16. Sharma C, Kaur A, Thind SS, Singh B, Raina S. Advanced glycation end-products (AGEs): an emerging concern for processed food industries. J Food Sci Technol. 2015;52(12):7561–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ulrich P, Cerami A. Protein glycation, diabetes and aging. Recent Prog Horm Res. 2001;56:21.

    Article  Google Scholar 

  18. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker GE, Vlassara H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28:195–201.

    Article  CAS  PubMed  Google Scholar 

  20. Nicholl ID, Stitt AW, Moore JE, Ritchie AJ, Archer DB, Bucala R. Increased levels of advanced glycation endproducts in the lenses and blood vessels of cigarette smokers. Mol Med. 1998;4:594–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. O'Brien J, Morrissey PA. Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit Rev Food Sci Nutr. 1989;28(3):211–48.

    Article  PubMed  Google Scholar 

  22. Van Puyvelde K, Mets T, Njemini R, et al. Effect of advanced glycation end product intake on inflammation and aging: a systematic review. Nutr Rev. 2014;72(10):638–50.

    Article  PubMed  Google Scholar 

  23. Mook-Kanamori MJ, Selim MM, Takiddin AH, et al. Ethnic and gender differences in advanced glycation end products measured by skin autofluorescence. Dermatoendocrinol. 2013;5(2):325–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Medvedev ZA. An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc. 1990;65:375–98.

    Article  CAS  PubMed  Google Scholar 

  25. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92:9363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA. 1992;89:10114–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science. 1999;286:774–9.

    Article  CAS  PubMed  Google Scholar 

  28. Harman D. The free radical theory of aging. Antioxid Redox Signal. 2003;5:557–61.

    Article  CAS  PubMed  Google Scholar 

  29. Giacomoni PU, Rein G. Factors of skin ageing share common mechanisms. Biogerontology. 2001;2:219–29.

    Article  CAS  PubMed  Google Scholar 

  30. Paraskevi Gkogkolou P, Böhm M. Advanced glycation end products key players in skin aging? Dermato-Endocrinology. 2012;4(3):259–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. John WG, Lamb EJ. Themaillard or browning reaction in diabetes. Eye. 1993;7:230–7.

    Article  PubMed  Google Scholar 

  32. Ahmed N. Advanced glycation end products-role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67:3–21.

    Article  CAS  PubMed  Google Scholar 

  33. Maillard LC. Action des acides amines sur les sucres: formation des melanoidines par voie methodique. C R Acad Sci (Paris). 1912;154:66–8.

    CAS  Google Scholar 

  34. Hodge JE. Dehydrated foods, chemistry of browning reactions in model systems. J Agric Food Chem. 1953;1:928–43.

    Article  CAS  Google Scholar 

  35. Paul RG, Bailey AJ. Glycation of collagen: the basis of its central role in the late complications of ageing and diabetes. Int J Biochem Cell Biol. 1996;28:1297–310.

    Article  CAS  PubMed  Google Scholar 

  36. Thorpe SR, Baynes JW. Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids. 2003;25(3-4):275–81.

    Article  CAS  PubMed  Google Scholar 

  37. Kawabata K, Yoshikawa H, Saruwatari K, et al. The presence of N(epsilon)-(carboxymethyl) lysine in the human epidermis. Biochim Biophys Acta. 2011;1814(10):1246–52.

    Article  CAS  PubMed  Google Scholar 

  38. Dyer DG, Dunn JA, Thorpe SR, et al. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993;91(6):2463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jeanmaire C, Danoux L, Pauly G. Glycation during human dermal intrinsic and actinic ageing: an in vivo and in vitro model study. Br J Dermatol. 2001;145(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  40. Fan X, Sell DR, Zhang J, Nemet I, Theves M, Lu J, et al. Anaerobic vs aerobic pathways of carbonyl and oxidant stress in human lens and skin during aging and in diabetes: a comparative analysis. Free Radic Biol Med. 2010;49:847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kueper T, Grune T, Prahl S, Lenz H, Welge V, Biernoth T, et al. Vimentin is the specific target in skin glycation. Structural prerequisites, functional consequences, and role in skin aging. J Biol Chem. 2007;282:23427–36.

    Article  CAS  PubMed  Google Scholar 

  42. Mizutari K, Ono T, Ikeda K, Kayashima K, Horiuchi S. Photo enhanced modification of human skin elastin in actinic elastosis by N(epsilon)(carboxymethyl)lysine, one of the glycoxidation products of the Maillard reaction. J Invest Dermatol. 1997;108:797–802.

    Article  CAS  PubMed  Google Scholar 

  43. Yu Y, Thorpe SR, Jenkins AJ, Shaw JN, Sochaski MA, McGee D, et al. Advanced glycation end-products and methionine sulphoxide in skin collagen of patients with type 1 diabetes. Diabetologia. 2006;49:2488–98.

    Article  CAS  PubMed  Google Scholar 

  44. Taneda S, Monnier VM. ELISA of pentosidine, an advanced glycation end product, in biological specimens. Clin Chem. 1994;40:1766–73.

    CAS  PubMed  Google Scholar 

  45. Sell DR, Biemel KM, Reihl O, Lederer MO, Strauch CM, Monnier VM. Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes. J Biol Chem. 2005;280:12310–5.

    Article  CAS  PubMed  Google Scholar 

  46. Ahmed MU, Brinkmann Frye E, Degenhardt TP, Thorpe SR, Baynes JW. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J. 1997;324:565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frye EB, Degenhardt TP, Thorpe SR, Baynes JW. Role of the Maillard reaction in aging of tissue proteins. Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. J Biol Chem. 1998;273:18714–9.

    Article  CAS  PubMed  Google Scholar 

  48. Reddy S, Bichler J, Wells-Knecht KJ, Thorpe SR, Baynes JW. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry. 1995;34:10872–8.

    Article  CAS  PubMed  Google Scholar 

  49. Gkogkolou P, Bohm M. Advanced glycation end products: key players in skin aging? Dermatoendocrinol. 2012;4(3):259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sell DR, Monnier VM. Isolation, purification and partial characterization of novel fluorophores from aging human insoluble collagen-rich tissue. Connect Tissue Res. 1989;19:77–92.

    Article  CAS  PubMed  Google Scholar 

  51. Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999;344:109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fleming TH, Humpert PM, Nawroth PP, Bierhaus A. Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process: a mini-review. Gerontology. 2011;57:435–43.

    CAS  PubMed  Google Scholar 

  53. Cerami C, Founds H, Nicholl I, Mitsuhashi T, Giordano D, Vanpatten S, et al. Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci USA. 1997;94:13915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leslie RD, Beyan H, Sawtell P, Boehm BO, Spector TD, Snieder H. Level of an advanced glycated end product is genetically determined: a study of normal twins. Diabetes. 2003;52:2441–4.

    Article  CAS  PubMed  Google Scholar 

  55. Thornalley PJ. The enzymatic defence against glycation in health, disease and therapeutics: a symposium to examine the concept. Biochem Soc Trans. 2003;31:1341–2.

    Article  CAS  PubMed  Google Scholar 

  56. Xue M, Rabbani N, Thornalley PJ. Glyoxalase in ageing. Semin Cell Dev Biol. 2011;22:293–301.

    Article  CAS  PubMed  Google Scholar 

  57. Wu X, Monnier VM. Enzymatic deglycation of proteins. Arch Biochem Biophys. 2003;419:16–24.

    Article  CAS  PubMed  Google Scholar 

  58. Van Schaftingen E, Collard F, Wiame E, Veiga-da-Cunha M. Enzymatic repair of amadori products. Amino Acids. 2012;42:1143–50.

    Article  PubMed  CAS  Google Scholar 

  59. Conner JR, Beisswenger PJ, Szwergold BS. Some clues as to the regulation, expression, function, and distribution of fructosamine-3-kinase and fructosamine-3-kinase-related protein. Ann N Y Acad Sci. 2005;1043:824–36.

    Article  CAS  PubMed  Google Scholar 

  60. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl). 2005;83:876–86.

    Article  CAS  Google Scholar 

  61. Loughlin DT, Artlett CM. Precursor of advanced glycation end products mediates ER-stress-induced caspase- 3 activation of human dermal fibroblasts through NAD(P)H oxidase 4. PLoS One. 2010;5:e11093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology. 2005;15:16R–28R.

    Article  CAS  PubMed  Google Scholar 

  63. Lohwasser C, Neureiter D, Weigle B, Kirchner T, Schuppan D. The receptor for advanced glycation end products is highly expressed in the skin and upregulated by advanced glycation end products and tumor necrosis factor-alpha. J Invest Dermatol. 2006;126:291–9.

    Article  CAS  PubMed  Google Scholar 

  64. Fujimoto E, Kobayashi T, Fujimoto N, Akiyama M, Tajima S, Nagai R. AGE modified collagens I and III induce keratinocyte terminal differentiation through AGE receptor CD36: epidermal-dermal interaction in acquired perforating dermatosis. J Invest Dermatol. 2010;130:405–14.

    Article  CAS  PubMed  Google Scholar 

  65. Zhu P, Ren M, Yang C, YX H, Ran JM, Yan L. Involvement of RAGE, MAPK and NF-κB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes. Exp Dermatol. 2012;21:123–9.

    Article  CAS  PubMed  Google Scholar 

  66. Hilmenyuk T, Bellinghausen I, Heydenreich B, Ilchmann A, Toda M, Grabbe S, et al. Effects of glycation of the model food allergen ovalbumin on antigen uptake and presentation by human dendritic cells. Immunology. 2010;129:437–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen Y, Akirav EM, Chen W, Henegariu O, Moser B, Desai D, et al. RAGE ligation affects T cell activation and controls T cell differentiation. J Immunol. 2008;181:4272–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tanaka N, Yonekura H, Yamagishi S, Fujimori H, Yamamoto Y, Yamamoto H. The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-alpha through nuclear factor-kappa B, and by 17beta-estradiol through Sp-1 in human vascular endothelial cells. J Biol Chem. 2000;275:25781–90.

    Article  CAS  PubMed  Google Scholar 

  69. Vlassara H. The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev. 2001;17:436–43.

    Article  CAS  PubMed  Google Scholar 

  70. Lu C, He JC, Cai W, Liu H, Zhu L, Vlassara H. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to age in mesangial cells. Proc Natl Acad Sci USA. 2004;101:11767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cai W, He JC, Zhu L, Chen X, Wallenstein S, Striker GE, Vlassara H. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol. 2007;170:1893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ramasamy R, Yan SF, Schmidt AM. RAGE: therapeutic target and biomarker of the inflammatory response-the evidence mounts. J Leukoc Biol. 2009;86:505–12.

    Article  CAS  PubMed  Google Scholar 

  73. Brownlee M, Vlassara H, Cerami A. Nonenzymaic glycosylation and the pathogenesis of diabetic complications. Annu Int Med. 1984;101:527–37.

    Article  CAS  Google Scholar 

  74. Raj DS, Choudhury D, Welbourne TC, Levi M. Age a nephrologist’s perspective. Am J Kidney Dis. 2000;35:365–80.

    Article  CAS  PubMed  Google Scholar 

  75. Uribarri J. Advanced glycation end products. In: Daugirdas JT, editor. Handbook of chronic kidney disease management. Philadelphia: Lippincott Willliams and Wilkins; 2012. p. 152–8.

    Google Scholar 

  76. Hipkiss AR. Accumulation of altered proteins and ageing: causes and effects. Exp Gerontol. 2006;41(5):464–73.

    Article  CAS  PubMed  Google Scholar 

  77. Dunn JA, McCance DR, Thorpe SR, et al. Age-dependent accumulation of N epsilon-(carboxymethyl)lysine and N epsilon-(carboxymethyl) hydroxylysine in human skin collagen. Biochemistry. 1991;30(5):1205–10.

    Article  CAS  PubMed  Google Scholar 

  78. Avery NC, Bailey AJ. The effects of the Maillard reaction on the physical properties and cell interactions of collagen. Pathol Biol (Paris). 2006;54(7):387–95.

    Article  CAS  Google Scholar 

  79. Haitoglou CS, Tsilibary EC, Brownlee M, et al. Altered cellular interactions between endothelial cells and nonenzymatically glucosylated laminin/type IV collagen. J Biol Chem. 1992;267(18):12404–7.

    CAS  PubMed  Google Scholar 

  80. Goldin A, Beckman JA, Schmidt AM, et al. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114(6):597–605.

    Article  CAS  PubMed  Google Scholar 

  81. DeGroot J, Verzijl N, Wenting-Van Wijk MJ, et al. Age-related decrease in susceptibility of human articular cartilage to matrix metalloproteinasemediated degradation: the role of advanced glycation end products. Arthritis Rheum. 2001;44(11):2562–71.

    Article  CAS  PubMed  Google Scholar 

  82. Nowotny K, Grune T. Degradation of oxidized and glycoxidized collagen: role of collagen cross-linking. Arch Biochem Biophys. 2014;542:56–64.

    Article  CAS  PubMed  Google Scholar 

  83. Yoshinaga E, Kawada A, Ono K, et al. N(varepsilon)-(carboxymethyl)lysine modification of elastin alters its biological properties: implications for the accumulation of abnormal elastic fibers in actinic elastosis. J Invest Dermatol. 2012;132(2):315–23.

    Article  CAS  PubMed  Google Scholar 

  84. Masaki H, Okano Y, Sakurai H. Generation of active oxygen species from advanced glycation end-products (AGEs) during ultraviolet light A (UVA) irradiation and a possible mechanism for cell damaging. Biochim Biophys Acta. 1999;1428(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  85. Alikhani Z, Alikhani M, Boyd CM, et al. Advanced glycation end products enhance expression of pro-apoptotic genes and stimulate fibroblast apoptosis through cytoplasmic and mitochondrial pathways. J Biol Chem. 2005;280(13):12087–95.

    Article  CAS  PubMed  Google Scholar 

  86. Zhu P, Yang C, Chen LH, et al. Impairment of human keratinocyte mobility and proliferation by advanced glycation end products-modified BSA. Arch Dermatol Res. 2011;303(5):339–50.

    Article  CAS  PubMed  Google Scholar 

  87. Bulteau AL, Verbeke P, Petropoulos I, et al. Proteasome inhibition in glyoxal-treated fibroblasts and resistance of glycated glucose-6-phosphate dehydrogenase to 20 S proteasome degradation in vitro. J Biol Chem. 2001;276(49):45662–8.

    Article  CAS  PubMed  Google Scholar 

  88. Roberts MJ, Wondrak GT, Laurean DC, et al. DNA damage by carbonyl stress in human skin cells. Mutat Res. 2003;522(1-2):45–56.

    Article  CAS  PubMed  Google Scholar 

  89. Verzijl N, DeGroot J, Oldehinkel E, Bank RA, Thorpe SR, Baynes JW, et al. Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem J. 2000;350:381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Haus JM, Carrithers JA, Trappe SW, Trappe TA. Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. J Appl Physiol. 2007;103:2068–76.

    Article  CAS  PubMed  Google Scholar 

  91. Sell DR, Carlson EC, Monnier VM. Differential effects of type 2 (non-insulin-dependent) diabetes mellitus on pentosidine formation in skin and glomerular basement membrane. Diabetologia. 1993;36:936–41.

    Article  CAS  PubMed  Google Scholar 

  92. Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci USA. 2002;99:15596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Glenn JV, Beattie JR, Barrett L, Frizzell N, Thorpe SR, Boulton ME, et al. Confocal Raman microscopy can quantify advanced glycation end product (age) modifications in Bruch’s membrane leading to accurate, nondestructive prediction of ocular aging. FASEB J. 2007;21:3542–52.

    Article  CAS  PubMed  Google Scholar 

  94. Stitt AW. Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br J Ophthalmol. 2001;85:746–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sell DR, Lane MA, Johnson WA, Masoro EJ, Mock OB, Reiser KM, et al. Longevity and the genetic determination of collagen glycoxidation kinetics in mammalian senescence. Proc Natl Acad Sci USA. 1996;93:485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schleicher ED, Wagner E, Nerlich AG. Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J Clin Invest. 1997;99:457–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Corstjens H, Dicanio D, Muizzuddin N, Neven A, Sparacio R, Declercq L, et al. Glycation associated skin autofluorescence and skin elasticity are related to chronological age and body mass index of healthy subjects. Exp Gerontol. 2008;43(7):663.

    Article  CAS  PubMed  Google Scholar 

  98. Pageon H. Reaction of glycation and human skin: the effects on the skin and its components, reconstructed skin as a model. Pathol Biol (Paris). 2010;58:226–31.

    Article  CAS  Google Scholar 

  99. Lutgers HL, Graaff R, Links TP, Ubink-Veltmaat LJ, Bilo HJ, Gans RO, et al. Skin autofluorescence as a noninvasive marker of vascular damage in patients with type 2 diabetes. Diabetes Care. 2006;29:2654–9.

    Article  PubMed  Google Scholar 

  100. Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BS, Uribarri J, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004;104:1287–91.

    Article  CAS  PubMed  Google Scholar 

  101. Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci. 2007;62:427–33.

    Article  PubMed  PubMed Central  Google Scholar 

  102. DeGroot J. The age of the matrix: chemistry, consequence and cure. Curr Opin Pharmacol. 2004;4:301–5.

    Article  CAS  PubMed  Google Scholar 

  103. Reihsner R, Melling M, Pfeiler W, Menzel EJ. Alterations of biochemical and two-dimensional biomechanical properties of human skin in diabetes mellitus as compared to effects of in vitro non-enzymatic glycation. Clin Biomech (Bristol, Avon). 2000;15:379–86.

    Article  CAS  Google Scholar 

  104. Yoon HS, Baik SH, Oh CH. Quantitative measurement of desquamation and skin elasticity in diabetic patients. Skin Res Technol. 2002;8:250–4.

    Article  PubMed  Google Scholar 

  105. Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest. 1994;94:110–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Uchiki T, Weikel KA, Jiao W, Shang F, Caceres A, Pawlak D, et al. Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in nondiabetics). Aging Cell. 2012;11:1–13.

    Article  CAS  PubMed  Google Scholar 

  107. Ukeda H, Hasegawa Y, Ishi T, Sawamura M. Inactivation of Cu, Zn-superoxide dismutase by intermediates of Maillard reaction and glycolytic pathway and some sugars. Biosci Biotechnol Biochem. 1997;61:2039–42.

    Article  CAS  PubMed  Google Scholar 

  108. Berge U, Behrens J, Rattan SI. Sugar-induced premature aging and altered differentiation in human epidermal keratinocytes. Ann NY Acad Sci. 2007;1100:524–9.

    Article  CAS  PubMed  Google Scholar 

  109. Ravelojaona V, Robert AM, Robert L. Expression of senescence-associated beta-galactosidase (SA-beta-Gal) by human skin fibroblasts, effect of advanced glycation end-products and fucose or rhamnose-rich polysaccharides. Arch Gerontol Geriatr. 2009;48:151–4.

    Article  CAS  PubMed  Google Scholar 

  110. Sejersen H, Rattan SI. Dicarbonyl-induced accelerated aging in vitro in human skin fibroblasts. Biogerontology. 2009;10:203–11.

    Article  CAS  PubMed  Google Scholar 

  111. Portero-Otín M, Pamplona R, Bellmunt MJ, Ruiz MC, Prat J, Salvayre R, et al. Advanced glycation end product precursors impair epidermal growth factor receptor signaling. Diabetes. 2002;51:1535–42.

    Article  PubMed  Google Scholar 

  112. Wondrak GT, Roberts MJ, Jacobson MK, Jacobson EL. Photosensitized growth inhibition of cultured human skin cells: mechanism and suppression of oxidative stress from solar irradiation of glycated proteins. J Invest Dermatol. 2002;119:489–98.

    Article  CAS  PubMed  Google Scholar 

  113. Yim MB, Yim HS, Lee C, Kang SO, Chock PB. Protein glycation: creation of catalytic sites for free radical generation. Ann NY Acad Sci. 2001;928:48–53.

    Article  CAS  PubMed  Google Scholar 

  114. Lee C, Yim MB, Chock PB, Yim HS, Kang SO. Oxidation-reduction properties of methylglyoxal-modified protein in relation to free radical generation. J Biol Chem. 1998;273:25272–8.

    Article  CAS  PubMed  Google Scholar 

  115. Qian M, Liu M, Eaton JW. Transition metals bind to glycated proteins forming redox active “glycochelates”: implications for the pathogenesis of certain diabetic complications. Biochem Biophys Res Commun. 1998;250:385–9.

    Article  CAS  PubMed  Google Scholar 

  116. Meerwaldt R, Links T, Graaff R, Thorpe SR, Baynes JW, Hartog J, et al. Simple noninvasive measurement of skin autofluorescence. Ann NY Acad Sci. 2005;1043:290–8.

    Article  CAS  PubMed  Google Scholar 

  117. Mulder DJ, Water TV, Lutgers HL, Graaff R, Gans RO, Zijlstra F, et al. Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations. Diabetes Technol Ther. 2006;8:523–35.

    Article  CAS  PubMed  Google Scholar 

  118. Tseng JY, Ghazaryan AA, Lo W, Chen YF, Hovhannisyan V, Chen SJ, et al. Multiphoton spectral microscopy for imaging and quantification of tissue glycation. Biomed Opt Express. 2010;2:218–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Bos DC, de Ranitz-Greven WL, de Valk HW. Advanced glycation end products, measured as skin autofluorescence and diabetes complications: a systematic review. Diabetes Technol Ther. 2011;13:773–9.

    Article  CAS  PubMed  Google Scholar 

  120. Smit AJ, Gerrits EG. Skin autofluorescence as a measure of advanced glycation endproduct deposition: a novel risk marker in chronic kidney disease. Curr Opin Nephrol Hypertens. 2010;19:527–33.

    Article  CAS  PubMed  Google Scholar 

  121. Genuth S, Sun W, Cleary P, Sell DR, Dahms W, Malone J, et al. DCCT Skin Collagen Ancillary Study Group. Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes. 2005;54:3103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Beisswenger PJ, Howell S, Mackenzie T, Corstjens H, Muizzuddin N, Matsui MS. Two fluorescent wavelengths, 440(ex)/520(em) nm and 370(ex)/440(em) nm, reflect advanced glycation and oxidation end products in human skin without diabetes. Diabetes Technol Ther. 2012;14:285–92.

    Article  CAS  PubMed  Google Scholar 

  123. Story M, Hayes M, Kalina B. Availability of foods in high schools: is there cause for concern? J Am Diet Assoc. 1996;96:123–6.

    Article  CAS  PubMed  Google Scholar 

  124. Vlassara H, Uribarri J. Glycoxidation and diabetic complications: modern lessons and a warning? Rev Endocr Metab Disord. 2004;5:181–8.

    Article  CAS  PubMed  Google Scholar 

  125. Ledl F, Schleicher E. New aspects of the maillard reaction in foods and in the human body. Angew Chem Int Ed. 1990;29:565–94.

    Article  Google Scholar 

  126. Nursten H. Introduction. In:The Maillard reaction chemistry, biochemistry and implications. Cambridge: The Royal Society of Chemistry; 2005. p. 1–4.

    Google Scholar 

  127. Nursten H. Recent advances. In:The Maillard Reaction chemistry, biochemistry and implications. Cambridge: The Royal Society of Chemistry; 2005. p. 31–51.

    Google Scholar 

  128. Poulsen MW, Hedegaard RV, Anderson JM, Courten B, Bugel S, Nielsen J, Skibsted LH, Dragsted L. Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol. 2013;60:10–37. https://doi.org/10.1016/j.fct.2013.06.052.

    Article  CAS  PubMed  Google Scholar 

  129. Finot PA, Magnenat E. Metabolic transit of early and advanced maillard products. Prog Food Nutr Sci. 1981;5:193–207.

    CAS  PubMed  Google Scholar 

  130. Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA. 1997;94(12):6474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Delgado-Andrade C, Seiquer I, Garcia MM, Galdo G, Navarro MP. Increased maillard reaction products intake reduces phosphorus digestibility in male adolescents. Nutr. 2011;27:86–91.

    Article  CAS  Google Scholar 

  132. Garcia MM, Seiquer I, Delgado-Andrade C, Galdo G, Navarro MP. Intake of Maillard reaction products reduces iron bioavailability in male adolescents. Mol Nutr Food Res. 2009;53:1551–60.

    Article  CAS  PubMed  Google Scholar 

  133. Seiquer I, Diaz-Alguacil J, Delgado-Andrade C, Lopez-Frias M, Munoz HA, Galdo G, Navarro MP. Diets rich in maillard reaction products affect protein digestibility in adolescent males aged 11–14 y. Am J Clin Nutr. 2006;83:1082–8.

    CAS  PubMed  Google Scholar 

  134. Bergmann R, Helling R, Heichert C, Scheunemann M, Mading P, Wittrisch H, Johannsen B, Henle T. Radio fluorination and positron emission tomography (PET) as a new approach to study the in vivo distribution and elimination of the advanced glycation endproducts N epsilon-carboxymethyllysine (CML) and N epsilon-carboxyethyllysine (CEL). Nahrung. 2001;45:182–8.

    Article  CAS  PubMed  Google Scholar 

  135. He C, Sabol J, Mitsuhashi T, Vlassara H. Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes. 1999;48:1308–15.

    Article  CAS  PubMed  Google Scholar 

  136. Peppa M, Brem H, Ehrlich P, Zhang JG, Cai W, Li Z, et al. Adverse effects of dietary glycotoxins on wound healing in genetically diabetic mice. Diabetes. 2003;52:2805–13.

    Article  CAS  PubMed  Google Scholar 

  137. Hofmann SM, Dong HJ, Li Z, Cai W, Altomonte J, Thung SN, Zeng F, Fisher EA, Vlassara H. Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes. 2002;51:2082–9.

    Article  CAS  PubMed  Google Scholar 

  138. Bierhaus A, Ziegler R, Nawroth PP. Molecular mechanisms of diabetic angiopathy clues for innovative therapeutic interventions. Horm Res. 1998;50(Suppl 1):1–5.

    CAS  PubMed  Google Scholar 

  139. Sano H, Higashi T, Matsumoto K, et al. Insulin enhances macrophage scavenger receptor mediated endocytic uptake of advanced glycated end products. J Biol Chem. 1998;273:8630–7.

    Article  CAS  PubMed  Google Scholar 

  140. Uribarri J, Cai WJ, Sandu O, Peppa M, Goldberg T, Vlassara H. Diet- derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann NYAcad Sci. 2005;1043:461–6.

    Article  CAS  Google Scholar 

  141. Cai W, Cao QD, Zhu L, et al. Oxidative stress-inducing carbonyl compounds from common foods: novel mediators of cellular dysfunction. Mol Med. 2002;8:337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Uribarri J, Peppa M, Cai W, Goldberg T, et al. Restriction of dietary glycotoxins markedly reduces AGE toxins in renal failure patients. J Am Soc Nephrol. 2003;14:728–31.

    Article  CAS  PubMed  Google Scholar 

  143. Zheng F, He C, Cai W, Hattori M, Steffes M, Vlassara H. Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes Metab Res Rev. 2002;18:224–37.

    Article  PubMed  Google Scholar 

  144. Tan AL, Sourris KC, Harcourt BE, Thallas-Bonke V, Penfold S, Andrikopoulos S, Thomas MC, O’Brien RC, Bierhaus A, Cooper ME, Forbes JM, Coughlan MT. Disparate effects on renal and oxidative parameters following RAGE deletion, AGE accumulation inhibition, or dietary AGE control in experimental diabetic nephropathy. Am J Physiol Ren Physiol. 2010;298:763–70.

    Article  CAS  Google Scholar 

  145. Feng JX, Hou FF, Liang M, Wang GB, Zhang X, Li HY, Xie D, Tian JW, Liu ZQ. Restricted intake of dietary advanced glycation end products retards renal progression in the remnant kidney model. Kidney Int. 2007;71:901–11.

    Article  CAS  PubMed  Google Scholar 

  146. Sebekova K, Faist V, Hofmann T, Schinzel R, Heidland A. Effects of a diet rich in advanced glycation end products in the rat remnant kidney model. Am J Kidney Dis. 2003;41:48–51.

    Article  Google Scholar 

  147. Lin RY, Choudhury RP, Cai W, Lu M, Fallon JT, Fisher EA, Vlassara H. Dietary glycotoxins promote diabetic atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis. 2003;168:213–20.

    Article  CAS  PubMed  Google Scholar 

  148. Cai W, He JC, Zhu L, Chen X, Zheng F, Striker GE, et al. Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. Am J Pathol. 2008;173:327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ames JM. Determination of Ne-(carboxymethyl) lysine in foods and related systems. Ann NY Acad Sci. 2008;1126:20–4.

    Article  CAS  PubMed  Google Scholar 

  150. Hartkopf J, Pahlke C, Lüdemann G, Erbersdobler HF. Determination of Ne-carboxymethyllysine by a reserved-phase high-performance liquid chromatography method. J Chromatogr. 1994;672:242–6.

    Article  CAS  Google Scholar 

  151. Delgado-Andrade C, Rufián-Henares JA, Morales FJ. Study on fluorescence of maillard reaction compounds in breakfast cereals. Mol Nutr Food Res. 2006;50:799–804.

    Article  CAS  PubMed  Google Scholar 

  152. Yaacoub R, Saliba R, Nsouli B, Khalaf G, Birlouez-Aragon I. Formation of lipid oxidation and isomerization products during processing of nuts and sesame seeds. J Agric Food Chem. 2008;6:7082–90.

    Article  CAS  Google Scholar 

  153. Drusch S, Faist V, Erbersdobler HF. Determination of Nepsiloncarboxymethyllysine in milk products by a modified reversed-phase HPLC method. Food Chem. 1999;65:547–53.

    Article  CAS  Google Scholar 

  154. Chao PC, Hsu CC, Yin MC. Analysis of glycative products in sauces and sauce-treated foods. Food Chem. 2009;113:262–6.

    Article  CAS  Google Scholar 

  155. Birlouez-Aragon I, Pischetsrieder M, Leclère J, et al. Assessment of protein glycation markers in infant formulas. Food Chem. 2004;87:253–9.

    Article  CAS  Google Scholar 

  156. Sebekova K, Saavedra G, Zumpe C, Somoza V, Klenovicsova K, Birlouez-Aragon I. Plasma concentration and urinary excretion of Ne-(carboxymethyl)lysine in breast milk- and formula-fed infants. Ann NY Acad Sci. 2008;1126:177–80.

    Article  CAS  PubMed  Google Scholar 

  157. Dhuique-Mayer C, Tbatou M, Carail M, Caris-Veyrat C, Dornier M, Amiot MJ. Thermal degradation of antioxidant micronutrients in citrus juice: kinetics and newly formed compounds. J Agric Food Chem. 2007;55:4209–16.

    Article  CAS  PubMed  Google Scholar 

  158. Klopotek Y, Otto K, Bohm V. Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins, and antioxidant capacity. J Agric Food Chem. 2005;53:5640–6.

    Article  CAS  PubMed  Google Scholar 

  159. Vikram VB, Ramesh MN, Prapulla SG. Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. J Food Eng. 2005;69:31–40.

    Article  Google Scholar 

  160. Birlouez-Aragon I, Saavedra G, Tessier FJ, Galinier A, Ait-Ameur L, Lacoste F, Niamba CN, Alt N, Somoza V, Lecerf JM. A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. Am J Clin Nutr. 2010;91:1220–6.

    Article  CAS  PubMed  Google Scholar 

  161. Depeint F, Shangari N, Furrer R, Bruce WR, O’Brien PJ. Marginal thiamine deficiency increases oxidative markers in the plasma and selected tissues in F344 rats. Nutr Res. 2007;27:698–704.

    Article  CAS  Google Scholar 

  162. Friedman M. Dietary impact of food processing. Annu Rev Nutr. 1992;12:119–37.

    Article  CAS  PubMed  Google Scholar 

  163. Perez-Locas C, Yaylayan VA. The Maillard reaction and food quality deterioration. In: Skibsted LH, Risbo J, Andersen ML, editors. Chemical deterioration and physical instability of food and beverages. Cambridge: Woodhead Publishing; 2010. p. 70–94.

    Chapter  Google Scholar 

  164. Gokmen V, Senyuva HZ. Effects of some cations on the formation of acrylamide and furfurals in glucose-asparagine model system. Eur Food Res Technol. 2012;225:815–20.

    Article  CAS  Google Scholar 

  165. Tareke E, Rydberg P, Karlsson P, Eriksson S, Tornqvist M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem. 2002;50:4998–5006.

    Article  CAS  PubMed  Google Scholar 

  166. Skog KI, Johansson MA, Jagerstad MI. Carcinogenic heterocyclic amines in model systems and cooked foods: a review on formation, occurrence and intake. Food Chem Toxicol. 1998;36:879–96.

    Article  CAS  PubMed  Google Scholar 

  167. Janzowski C, Glaab V, Samimi E, Schlatter J, Eisenbrand G. 5-Hydroxymethylfurfural: assessment of mutagenicity, DNAdamaging potential and reactivity towards cellular glutathione. Food Chem Toxicol. 2000;38:801–9.

    Article  CAS  PubMed  Google Scholar 

  168. Pouillart P, Mauprivez H, Ait-Ameur L, Cayzeele A, Lecerf JM, Tessier FJ, Birlouez-Aragon I. Strategy for the study of the health impact of dietary maillard products in clinical studies—the example of the ICARE clinical study on healthy adults. Ann NY Acad Sci. 2008;1126:173–6.

    Article  CAS  PubMed  Google Scholar 

  169. Farris PK. Innovative cosmeceuticals: sirtuin activators and anti-glycation compounds. Semin Cutan Med Surg. 2011;30:163–6.

    Article  CAS  PubMed  Google Scholar 

  170. Elosta A, Ghous T, Ahmed N. Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications. Curr Diabetes Rev. 2012;8:92–108.

    Article  CAS  PubMed  Google Scholar 

  171. Edelstein D, Brownlee M. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes. 1992;41:26–9.

    Article  CAS  PubMed  Google Scholar 

  172. Reddy VP, Beyaz A. Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov Today. 2006;11:646–54.

    Article  CAS  PubMed  Google Scholar 

  173. Pageon H, Técher MP, Asselineau D. Reconstructed skin modified by glycation of the dermal equivalent as a model for skin aging and its potential use to evaluate anti-glycation molecules. Exp Gerontol. 2008;43:584–8.

    Article  CAS  PubMed  Google Scholar 

  174. Sell DR, Nelson JF, Monnier VM. Effect of chronic aminoguanidine treatment on age-related glycation, glycoxidation, and collagen cross-linking in the Fischer 344 rat. J Gerontol A Biol Sci Med Sci. 2001;56:B405–11.

    Article  CAS  PubMed  Google Scholar 

  175. Degenhardt TP, Alderson NL, Arrington DD, Beattie RJ, Basgen JM, Steffes MW, et al. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin- diabetic rat. Kidney Int. 2002;61:939–50.

    Article  CAS  PubMed  Google Scholar 

  176. Caballero F, Gerez E, Batlle A, Vazquez E. Preventive aspirin treatment of streptozotocin induced diabetes: blockage of oxidative status and revertion of heme enzymes inhibition. Chem Biol Interact. 2000;126:215–25.

    Article  CAS  PubMed  Google Scholar 

  177. Malik NS, Meek KM. The inhibition of sugar-induced structural alterations in collagen by aspirin and other compounds. Biochem Biophys Res Commun. 1994;99:683–6.

    Article  Google Scholar 

  178. Khalifah RG, Baynes JW, Hudson BG. Amadorins: novel postamadori inhibitors of advanced glycation reactions. Biochem Biophys Res Commun. 1999;257:251–8.

    Article  CAS  PubMed  Google Scholar 

  179. Metz TO, Alderson NL, Thorpe SR, Baynes JW. Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications. Arch Biochem Biophys. 2003;419:41–9.

    Article  CAS  PubMed  Google Scholar 

  180. Voziyan PA, Metz TO, Baynes JW, Hudson BG. A post-Amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation. J Biol Chem. 2002;277:3397–403.

    Article  CAS  PubMed  Google Scholar 

  181. Booth AA, Khalifah RG, Todd P, Hudson BG. In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs) Novel inhibition of post-Amadori glycation pathways. J Biol Chem. 1997;272:5430–7.

    Article  CAS  PubMed  Google Scholar 

  182. Voziyan PA, Hudson BG. Pyridoxamine: the many virtues of a maillard reaction inhibitor. Ann NY Acad Sci. 2005;1043:807–16.

    Article  CAS  PubMed  Google Scholar 

  183. Vasan S, Foiles P, Founds H. Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys. 2003;419:89–96.

    Article  CAS  PubMed  Google Scholar 

  184. Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, et al. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res. 2003;92:785–92.

    Article  CAS  PubMed  Google Scholar 

  185. Bakris GL, Bank AJ, Kass DA, Neutel JM, Preston RA, Oparil S. Advanced glycation end-product cross-linkbreakers. A novel approach to cardiovascular pathologies related to the aging process. Am J Hypertens. 2004;17:23S–30S.

    Article  CAS  PubMed  Google Scholar 

  186. Yang S, Litchfield JE, Baynes JW. AGE-breakers cleave model compounds, but do not break Maillard crosslinks in skin and tail collagen from diabetic rats. Arch Biochem Biophys. 2003;412:42–6.

    Article  CAS  PubMed  Google Scholar 

  187. Monnier VM, Sell DR. Prevention and repair of protein damage by the Maillard reaction in vivo. Rejuvenation Res. 2006;9:264–73; 114-117 In the rat ALT-711 showed some promising results on skin hydration

    Article  CAS  PubMed  Google Scholar 

  188. Xue M, Rabbani N, Momiji H, Imbasi P, Anwar MM, Kitteringham N, et al. Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochem J. 2012;443:213–22.

    Article  CAS  PubMed  Google Scholar 

  189. Monnier VM, Wu X. Enzymatic deglycation with amadoriase enzymes from Aspergillus sp. as a potential strategy against the complications of diabetes and aging. Biochem Soc Trans. 2003;31:1349–53.

    Article  CAS  PubMed  Google Scholar 

  190. Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thorpe SR, Onorato J, et al. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest. 1998;101:1142–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kim KM, Kim YS, Jung DH, Lee J, Kim JS. Increased glyoxalase I levels inhibit accumulation of oxidative stress and an advanced glycation end product in mouse mesangial cells cultured in high glucose. Exp Cell Res. 2012;318:152–9.

    Article  CAS  PubMed  Google Scholar 

  192. Brouwers O, Niessen PM, Ferreira I, Miyata T, Scheffer PG, Teerlink T, et al. Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J Biol Chem. 2011;286:1374–80.

    Article  CAS  PubMed  Google Scholar 

  193. Price DL, Rhett PM, Thorpe SR, Baynes JW. Chelatingactivity of advanced glycation end-product inhibitors. J Biol Chem. 2001;276:48967–72.

    Article  CAS  PubMed  Google Scholar 

  194. Rutter K, Sell DR, Fraser N, Obrenovich M, Zito M, Starke-Reed P, et al. Green tea extract suppresses theage-related increase in collagen crosslinking and fluorescent products in C57BL/6 mice. Int J Vitam Nutr Res. 2003;73:453–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tarwadi KV, Agte VV. Effect of micronutrients on methylglyoxal-mediated in vitro glycation of albumin. Biol Trace Elem Res. 2011;143(2):717–25.

    Article  CAS  PubMed  Google Scholar 

  196. Thirunavukkarasu V, Nandhini AT, Anuradha CV. Fructose diet-induced skin collagen abnormalities are prevented by lipoic acid. Exp Diabesity Res. 2004;5(4):237–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Odetti P, Pesce C, Traverso N, Menini S, Maineri EP, Cosso L, et al. Comparative trial of N-acetylcysteine, taurine, and oxerutin on skin and kidney damage in long-term experimental diabetes. Diabetes. 2003;52:499–505.

    Article  CAS  PubMed  Google Scholar 

  198. Rasheed Z, Anbazhagan AN, Akhtar N, Ramamurthy S, Voss FR, Haqqi TM. Green tea polyphenol epigallocatechin- 3-gallate inhibits advanced glycation end product-induced expression of tumor necrosis factor-alpha and matrix metalloproteinase-13 in human chondrocytes. Arthritis Res Ther. 2009;11:R71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Vinson JA, Howard HB. Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J Nutr Biochem. 1996;7:659–63.

    Article  CAS  Google Scholar 

  200. Dearlove RP, Greenspan P, Hartle DK, Swanson RB, Hargrove JL. Inhibition of protein glycation by extracts of culinary herbs and spices. J Med Food. 2008;11:275–81.

    Article  CAS  PubMed  Google Scholar 

  201. Jin S, Cho KH. Water extracts of cinnamon and clove exhibits potent inhibition of protein glycation and anti-atherosclerotic activity in vitro and in vivo hypolipidemic activity in zebrafish. Food Chem Toxicol. 2011;49:1521–9.

    Article  CAS  PubMed  Google Scholar 

  202. Draelos ZD, Yatskayer M, Raab S, Oresajo C. An evaluation of the effect of a topical product containing C-xyloside and blueberry extract on the appearance of type II diabetic skin. J Cosmet Dermatol. 2009;8:147–51.

    Article  PubMed  Google Scholar 

  203. CH W, Yen GC. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. J Agric Food Chem. 2005;53:3167–73.

    Article  CAS  Google Scholar 

  204. Fukami K, Yamagishi S, Sakai K, et al. Potential inhibitory effects of L-carnitine supplementation on tissue advanced glycation end products in patients with hemodialysis. Rejuvenation Res. 2013;16(6):460–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hagen TM, Liu J, Lykkesfeldt J, et al. Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Natl Acad Sci USA. 2002;99(4):1870–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Liang CP, Wang M, Simon JE, Ho CT. Antioxidant activity of plant extracts on the inhibition of citral off-odor formation. Mol Nutr Food Res. 2004;48:308–17.

    Article  CAS  PubMed  Google Scholar 

  207. Peng X, Ma J, Cheng KW, Jiang Y, Chen F, Wang M. The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chem. 2010;119:49–53.

    Article  CAS  Google Scholar 

  208. Peng X, Cheng KW, Ma J, Chen B, Ho CT, Lo C, et al. Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. J Agric Food Chem. 2008;56:1907–11.

    Article  CAS  PubMed  Google Scholar 

  209. Lo CY, Li S, Tan D, Pan MH, Sang S, Ho CT. Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions. Mol Nutr Food Res. 2006;50(12):1118–28.

    Article  CAS  PubMed  Google Scholar 

  210. Lee CK, Klopp RG, Weindruch R, Prolla TA. Gene expression profile of aging and its retardation by caloric restriction. Science. 1999;285:1390–3.

    Article  CAS  PubMed  Google Scholar 

  211. Cefalu WT, Bell-Farrow AD, Wang ZQ, Sonntag WE, MX F, Baynes JW, et al. Caloric restriction decreases age-dependent accumulation of the glycoxidation products, N-epsilon(carboxymethyl)lysine and pentosidine, in rat skin collagen. J Gerontol A Biol Sci Med Sci. 1995;50:B337–41.

    Article  CAS  PubMed  Google Scholar 

  212. Reiser KM. Influence of age and long-term dietary restriction on enzymatically mediated crosslinks and nonenzymatic glycation of collagen in mice. J Gerontol. 1994;49:B71–9.

    Article  CAS  PubMed  Google Scholar 

  213. Sell DR, Kleinman NR, Monnier VM. Longitudinal determination of skin collagen glycation and glycoxidation rates predicts early death in C57BL/6NNIA mice. FASEB J. 2000;14:145–56.

    Article  CAS  PubMed  Google Scholar 

  214. Sebeková K, Somoza V. Dietary advanced glycation endproducts (AGEs) and their health effects-PRO. Mol Nutr Food Res. 2007;51:1079–84.

    Article  PubMed  CAS  Google Scholar 

  215. Yamagishi S, Ueda S, Okuda S. Food-derived advanced glycation end products (AGEs): a novel therapeutic target for various disorders. Curr Pharm Des. 2007;13:2832–6.

    Article  CAS  PubMed  Google Scholar 

  216. Vlassara H, Striker GE. AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol. 2011;7(9):526–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lyons TJ, Bailie KE, Dyer DG, Dunn JA, Baynes JW. Decrease in skin collagen glycation with improved glycemic control in patients with insulin-dependent diabetes mellitus. J Clin Invest. 1991;87:1910–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Monnier VM, Bautista O, Kenny D, Sell DR, Fogarty J, Dahms W, et al. DCCT Skin Collagen Ancillary Study Group. Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial. Diabetes. 1999;48:870–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hudson BI, Bucciarelli LG, Wendt T, Sakaguchi T, Lalla E, Qu W, et al. Blockade of receptor for advanced glycation endproducts: a new target for therapeutic intervention in diabetic complications and inflammatory disorders. Arch Biochem Biophys. 2003;419:80–8.

    Article  CAS  PubMed  Google Scholar 

  220. Yan SF, Ramasamy R, Schmidt AM. Soluble RAGE: therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochem Pharmacol. 2010;79:1379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Goova MT, Li J, Kislinger T, Qu W, Lu Y, Bucciarelli LG, et al. Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice. Am J Pathol. 2001;159:513–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Babizhayev MA, Deyev AI, Savel’yeva EL, Lankin VZ, Yegorov YE. Skin beautification with oral non-hydrolized versions of carnosine and carcinine: effective therapeutic management and cosmetic skincare solutions against oxidative glycation and free-radical production as a causal mechanism of diabetic complications and skin aging. J Dermatolog Treat. 2012;23(5):345–84.

    Article  CAS  PubMed  Google Scholar 

  223. Babizhayev MA, Nikolayev GM, Nikolayeva JG, Yegorov YE. Biologic activities of molecular chaperones and pharmacologic chaperone imidazole-containing dipeptide-based compounds: natural skin care help and the ultimate challenge: implication for adaptive responses in the skin. Am J Ther. 2012;19:e69–89.

    Article  PubMed  Google Scholar 

  224. Babizhayev MA, Yegorov YE. Therapeutic uses of drug-carrier systems for imidazole-containing dipeptide compounds that act as pharmacological chaperones and have significant impact on the treatment of chronic diseases associated with increased oxidative stress and the formation of advanced glycation end products. Crit Rev Ther Drug Carrier Syst. 2010;27:85–154.

    Article  CAS  PubMed  Google Scholar 

  225. Urbach E, Lentz JW. Carbohydrate metabolism and the skin. Arch Derm Syphilol. 1945;52:301–16.

    Article  CAS  PubMed  Google Scholar 

  226. Danby FW. Nutrition and aging skin: sugar and glycation. Clin Dermatol. 2010;28(4):409–11.

    Article  PubMed  Google Scholar 

  227. Draelos ZD. Aging skin: the role of diet: facts and controversies. Clin Dermatol. 2013;31(6):701–6.

    Article  PubMed  Google Scholar 

  228. Wu LY, Juan CC, Ho LT, Hsu YP, Hwang LS. Effect of green tea supplement on insulin sensitivity in Sprague–Dawley rats. J Agric Food Chem. 2004;52:643–8.

    Article  CAS  PubMed  Google Scholar 

  229. Babu PVA, Sabitha KE, Shyamaladevi CS. Effect of green tea extract on advanced glycation and cross-linking of tail tendon collagen in streptozotocin induced diabetic rats. Food Chem Toxicol. 2008;46:280–5.

    Article  CAS  PubMed  Google Scholar 

  230. Mizutani K, Ikeda K, Yamori Y. Resveratrol inhibits AGEs-induced proliferation and collagen synthesis activity in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. Biochem Biophys Res Commun. 2000;274(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  231. Liu Y, He XQ, Huang X, et al. Resveratrol protects mouse oocytes from methylglyoxal-induced oxidative damage. PLoS One. 2013;8(10):e77960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Yokozawa T, Nakagawa T. Inhibitory effects of Luobuma tea and its components against glucose-mediated protein damage. Food Chem Toxicol. 2004;42:975–81.

    Article  CAS  PubMed  Google Scholar 

  233. Ardestani A, Yazdanparast R. Cyperus rotundus suppresses AGE formation and protein oxidation in a model of fructose-mediated protein glycoxidation. Int J Biol Macromol. 2007;41:572–8.

    Article  CAS  PubMed  Google Scholar 

  234. Gugliucci A, Markowicz Bastos DH, Schulze J, Ferreira Souza MF. Caffeic and cholorogenic acids in ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins. Fitoterapia. 2009;80:339–44.

    Article  CAS  PubMed  Google Scholar 

  235. Hsieh CL, Lin YC, Ko WS, Peng CH, Huang CN, Peng RY. Inhibitory effect of some selected nutraceutic herbs on LDL glycation induced by glucose and glyoxal. J Ethn. 2005;102:357–63.

    Article  Google Scholar 

  236. Ho SC, SP W, Lin SM, Tang YL. Comparison of anti-glycation capacities of several herbal infusions with that of green tea. Food Chem. 2010;122:768–74.

    Article  CAS  Google Scholar 

  237. Nakagawa T, Yokozawa T, Terasawa K, Shu S, Juneja LR. Protective activity of green tea against free radical- and glucosemediated protein damage. J Agric Food Chem. 2002;50:2418–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Reato Marçon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steiner, D., Marçon, C.R., Sabban, E.N.C. (2018). Diabetes, Non-Enzymatic Glycation, and Aging. In: Cohen Sabban, E., Puchulu, F., Cusi, K. (eds) Dermatology and Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-319-72475-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72475-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72474-4

  • Online ISBN: 978-3-319-72475-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics