Skip to main content

Experimental Study of the Ehrhart Interpolation Polytope

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10693))

  • 500 Accesses

Abstract

In this paper we define a family of polytopes called Ehrhart Interpolation Polytopes with respect to a given polytope and a parameter corresponding to the dilation of the polytope. We experimentally study the behavior of the number of lattice points in each member of the family, looking for a member with a single lattice point. That single lattice point is the h* vector of the given polytope. Our study is motivated by efficient algorithms for lattice point enumeration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck, M., De Loera, J.A., Develin, M., Pfeifle, J., Stanley, R.P.: Coefficients and Roots of Ehrhart Polynomials. ArXiv Mathematics e-prints, February 2004

    Google Scholar 

  2. Ehrhart, E.: Sur la loi de réciprocité des polyèdres rationnels. C. R. Acad. Sci. Paris 26612, 696–697 (1968)

    MATH  Google Scholar 

  3. Emiris, I.Z., Fisikopoulos, V.: Efficient random-walk methods for approximating polytope volume. In: 30th Annual Symposium on Computational Geometry, Kyoto, Japan, p. 318 (2014)

    Google Scholar 

  4. Köppe, M.: Personal communication

    Google Scholar 

  5. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.0.0) (2017). http://www.sagemath.org

  6. Stanley, R.P.: Decompositions of rational convex polytopes. In: Srivastava, J., (ed.) Combinatorial Mathematics, Optimal Designs and Their Applications. Ann. Discrete Math. 6, 333–342. Elsevier (1980)

    Google Scholar 

  7. Stanley, R.P.: A monotonicity property of h-vectors and h*-vectors. Eur. J. Comb. 14(3), 251–258 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Stapledon, A.: Additive number theory and inequalities in Ehrhart theory. Int. Math. Res. Not. 2016(5), 1497–1540 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The second author acknowledges support from the project BAP 2016-A-27 of Gebze Technical University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vissarion Fisikopoulos or Zafeirakis Zafeirakopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fisikopoulos, V., Zafeirakopoulos, Z. (2017). Experimental Study of the Ehrhart Interpolation Polytope. In: Blömer, J., Kotsireas, I., Kutsia, T., Simos, D. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2017. Lecture Notes in Computer Science(), vol 10693. Springer, Cham. https://doi.org/10.1007/978-3-319-72453-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72453-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72452-2

  • Online ISBN: 978-3-319-72453-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics