Skip to main content

On Interval Methods with Zero Rewriting and Exact Geometric Computation

  • Conference paper
  • First Online:
Book cover Mathematical Aspects of Computer and Information Sciences (MACIS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10693))

  • 502 Accesses

Abstract

We oppose interval-symbol methods with zero rewriting developed by Shirayanagi and Sekigawa [14, 31,32,33] to the exact geometric computation paradigm [17, 37], especially to exact decisions computation via lazy adaptive evaluation with expression-dags, in doing so carving out analogies and disparities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benouamer, M.O., Jaillon, P., Michelucci, D., Moreau, J.M.: A lazy exact arithmetic. In: Proceedings of the 11th Symposium on Computer Arithmetic, pp. 242–249. IEEE (1993)

    Google Scholar 

  2. Boost C++ Libraries. http://www.boost.org/

  3. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: Efficient exact geometric computation made easy. In: Proceedings of the 15th Symposium on Computational Geometry, pp. 341–350. ACM (1999)

    Google Scholar 

  4. Burnikel, C., Funke, S., Mehlhorn, K., Schirra, S., Schmitt, S.: A separation bound for real algebraic expressions. Algorithmica 55(1), 14–28 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. CGAL: Computational Geometry Algorithms Library. http://www.cgal.org/

  6. Emiris, I.Z., Mourrain, B., Tsigaridas, E.P.: The DMM bound: multivariate (aggregate) separation bounds. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ISSAC 2010, pp. 243–250. ACM, New York (2010). http://doi.acm.org/10.1145/1837934.1837981

  7. Fortune, S., van Wyk, C.J.: Static analysis yields efficient exact integer arithmetic for computational geometry. ACM Trans. Graph. 15(3), 223–248 (1996)

    Article  Google Scholar 

  8. Funke, S., Mehlhorn, K.: LOOK: a lazy object-oriented kernel design for geometric computation. Comput. Geom. Theor. Appl. 22(1–3), 99–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Funke, S., Mehlhorn, K., Näher, S.: Structural filtering: a paradigm for efficient and exact geometric programs. Comput. Geom. Theor. Appl. 31(3), 179–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Halperin, D.: Controlled perturbation for certified geometric computing with fixed-precision arithmetic. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 92–95. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-6_19

    Chapter  Google Scholar 

  11. Halperin, D., Leiserowitz, E.: Controlled perturbation for arrangements of circles. In: Proceedings of the 19th Symposium on Computational Geometry, pp. 264–273. ACM (2003)

    Google Scholar 

  12. Halperin, D., Shelton, C.R.: A perturbation scheme for spherical arrangements with application to molecular modeling. Comput. Geom. Theor. Appl. 10, 273–287 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.K.: A core library for robust numeric and geometric computation. In: Proceedings of the 15th Symposium on Computational Geometry, pp. 351–359. ACM (1999)

    Google Scholar 

  14. Katayama, A., Shirayanagi, K.: A new idea on the interval-symbol method with correct zero rewriting for reducing exact computations. ACM Commun. Comput. Algebra 50(4), 176–178 (2016). http://doi.acm.org/10.1145/3055282.3055295

    Article  MATH  Google Scholar 

  15. Kettner, L., Welzl, E.: One sided error predicates in geometric computing. In: Proceedings of the 15th IFIP World Computer Congress, Fundamentals - Foundations of Computer Science, pp. 13–26 (1998)

    Google Scholar 

  16. LEDA: Library of Efficient Data Types and Algorithms. http://www.algorithmic-solutions.com/

  17. Li, C., Pion, S., Yap, C.K.: Recent progress in exact geometric computation. J. Logic Algebr. Program. 64(1), 85–111 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mehlhorn, K., Osbild, R., Sagraloff, M.: A general approach to the analysis of controlled perturbation algorithms. Comput. Geom. 44(9), 507–528 (2011). http://www.sciencedirect.com/science/article/pii/S0925772111000460

    Article  MathSciNet  MATH  Google Scholar 

  19. Mignotte, M.: Identification of algebraic numbers. J. Algorithms 3, 197–204 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mörig, M.: Algorithm engineering for expression dag based number types. Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg (2015)

    Google Scholar 

  21. MPFR: A multiple precision floating-point library. http://www.mpfr.org/

  22. Mulmuley, K.: Computational Geometry - An Introduction Through Randomized Algorithms. Prentice Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  23. Pion, S., Fabri, A.: A generic lazy evaluation scheme for exact geometric computations. Sci. Comput. Program. 76(4), 307–323 (2011)

    Article  Google Scholar 

  24. Pion, S., Yap, C.K.: Constructive root bound for \(k\)-ary rational input numbers. Theor. Comput. Sci. 369(1–3), 361–376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schirra, S.: Much ado about zero. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 408–421. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03456-5_27

    Chapter  Google Scholar 

  26. Sekigawa, H.: Zero determination of algebraic numbers using approximate computation and its application to algorithms in computer algebra. Ph.D. thesis, University of Tokyo (2004)

    Google Scholar 

  27. Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete Comput. Geom. 18(3), 305–363 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shirayanagi, K., Sweedler, M.: A theory of stabilizing algebraic algorithms. Technical report, Mathematical Sciences Institute, Cornell University (1995)

    Google Scholar 

  29. Shirayanagi, K., Sweedler, M.: Remarks on automatic algorithm stabilization. J. Symb. Comput. 26(6), 761–765 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shirayanagi, K.: Floating point Gröbner bases. Math. Comput. Simul. 42(4–6), 509–528 (1996). https://doi.org/10.1016/S0378-4754(96)00027-4

    Article  MathSciNet  MATH  Google Scholar 

  31. Shirayanagi, K., Sekigawa, H.: A new method of reducing exact computations to obtain exact results. ACM Commun. Comput. Algebra 43(3/4), 102–104 (2009). http://doi.acm.org/10.1145/1823931.1823950

    MATH  Google Scholar 

  32. Shirayanagi, K., Sekigawa, H.: Reducing exact computations to obtain exact results based on stabilization techniques. In: Proceedings of Numeric Computation 2009, pp. 191–198 (2009). http://doi.acm.org/10.1145/1577190.1577219

  33. Shirayanagi, K., Sekigawa, H.: Interval-symbol method with correct zero rewriting: reducing exact computations to obtain exact results. In: Proceedings of the 18th Asian Technology Conference in Mathematics, pp. 226–235 (2013)

    Google Scholar 

  34. Sugihara, K.: Computational geometry in the human brain. In: Akiyama, J., Ito, H., Sakai, T. (eds.) JCDCGG 2013. LNCS, vol. 8845, pp. 145–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13287-7_13

    Google Scholar 

  35. Sugihara, K., Iri, M.: A robust topology-oriented incremental algorithm for Voronoi diagrams. Int. J. Comput. Geom. Appl. 4(2), 179–228 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sugihara, K., Iri, M., Inagaki, H., Imai, T.: Topology-oriented implementation - an approach to robust geometric algorithms. Algorithmica 27(1), 5–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yap, C.K.: Towards exact geometric computation. Comput. Geom. Theor. Appl. 7(1–2), 3–23 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yap, C.K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, Chap. 41, 2nd edn., pp. 927–952. CRC, Boca Raton (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schirra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schirra, S., Wilhelm, M. (2017). On Interval Methods with Zero Rewriting and Exact Geometric Computation. In: Blömer, J., Kotsireas, I., Kutsia, T., Simos, D. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2017. Lecture Notes in Computer Science(), vol 10693. Springer, Cham. https://doi.org/10.1007/978-3-319-72453-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72453-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72452-2

  • Online ISBN: 978-3-319-72453-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics