Advertisement

Unit Cell Models of Viscoelastic Fibrous Composites for Numerical Computation of Effective Properties

  • Harald Berger
  • Mathias Würkner
  • José A. Otero
  • Raúl Guinovart-Díaz
  • Julián Bravo-Castillero
  • Reinaldo Rodríguez-Ramos
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 89)

Abstract

The paper presents an extension to viscoelastic composites of a former developed numerical homogenization procedure which was used for elastic and piezoelectric material systems. It is based on an unit cell model using the finite element method. In the paper a brief description of the basic equations and the homogenization algorithm with specific attention to the numerical model is given. The investigated composites consist of a viscoelastic matrix with unidirectional embedded cylindrical elastic fibers. Hence the homogenized behavior of the composite is also viscoelastic. Consequently the effective coefficients are time-dependent. The geometrical shape of the unit cell is rhombic which allows to analyze a wide range of nonstandard unidirectional fiber distributions. Otherwise it includes the special cases for square and hexagonal fiber arrangements which can be used for comparisons with other solutions. Here results are compared with an analytical homogenization method. Furthermore the influences of rhombic angle and fiber volume fraction on effective coefficients are investigated. In addition two limit cases are considered. One is with air as inclusions which is equivalent to a porous media and the other is the pure matrix without fibers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger H, Kari S, Gabbert U, Rodríguez-Ramos R, Bravo-Castillero J, Guinovart-Díaz R, Sabina FJ, Maugin GA (2006) Unit cell models of piezoelectric fiber composites for numerical and analytical calculation of effective properties. Smart Mater Struct 15:451–458Google Scholar
  2. Cruz-González OL, Rodríguez-Ramos R, Otero JA, Bravo-Castillero J, Guinovart-Díaz R, Martínez-Rosado R, Sabina FJ, Dumont S, Lebon F, Sevostianov I (2018) Viscoelastic effective properties for composites with rectangular cross-section fibers using the asymptotic homogenization method. In: Altenbach H, Pouget J, Rousseau M, Collet B, Michelitsch T (eds) Generalized Models and Non-Classical Approaches in Complex Materials - Vol. 1, Springer, Singapore, Advanced Structured Materials, vol 92, pp 203–222Google Scholar
  3. Daridon L, Licht C, Orankitjaroen S, Pagano S (2016) Periodic homogenization for Kelvin-Voigt viscoelastic media with a Kelvin-Voigt viscoelastic interphase. European Journal of Mechanics - A/Solids 58:163–171Google Scholar
  4. Gutierrez-Lemini D (2014) Engineering Viscoelasticity. Springer, New YorkGoogle Scholar
  5. Haasemann G, Ulbricht V (2009) Numerical evaluation of the viscoelastic and viscoplastic behavior of composites. Technische Mechanik 30:122–135Google Scholar
  6. Kari S, Berger H, Rodríguez-Ramos R, Gabbert U (2007) Numerical evaluation of effective material properties of transversely randomly distributed unidirectional piezoelectric fiber composites. Journal of Intelligent Material Systems and Structures 18(4):361–372Google Scholar
  7. Nguyen H, Pastor J, Muller D (1995) A method for predicting linear viscoelastic mechanical behavior of composites, a comparison with other methods and experimental validation. European Journal of Mechanics - A/Solids 14:939–960Google Scholar
  8. Pathan MV, Tagarielli VL, Patsias S (2017) Numerical predictions of the anisotropic viscoelastic response of uni-directional fibre composites. Composites Part A: Applied Science and Manufacturing 93:18–32Google Scholar
  9. Tang T, Felicelli SD (2016) Effective creep response and uniaxial tension behavior of linear viscoelastic polymer composites. In: Sano T, Srivatsan TS (eds) Advanced Composites for Aerospace, Marine, and Land Applications II, Springer International Publishing, Cham, pp 335–345Google Scholar
  10. To QD, Nguyen ST, Bonnet G, Vu MN (2017) Overall viscoelastic properties of 2d and two-phase periodic composites constituted of elliptical and rectangular heterogeneities. European Journal of Mechanics - A/Solids 64:186–201Google Scholar
  11. Würkner M, Berger H, Gabbert U (2011) On numerical evaluation of effective material properties for composite structures with rhombic fiber arrangements. International Journal of Engineering Science 49(4):322–332Google Scholar
  12. Yancey RN, Pindera MJ (1990) Micromechanical analysis of the creep response of unidirectional composites. Journal of Engineering Materials and Technology 112(2):157–163Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Harald Berger
    • 1
  • Mathias Würkner
    • 1
  • José A. Otero
    • 2
  • Raúl Guinovart-Díaz
    • 3
  • Julián Bravo-Castillero
    • 3
  • Reinaldo Rodríguez-Ramos
    • 3
  1. 1.Institut für MechanikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.Instituto Tecnológico de Estudios Superiores de Monterrey CEMAtizapán de ZaragozaMéxico
  3. 3.Facultad de Matemática y ComputacióUniversidad de La HabanaLa HabanaCuba

Personalised recommendations