Modelling of an Ionic Electroactive Polymer by the Thermodynamics of Linear Irreversible Processes

Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 89)

Abstract

Ionic polymer-metal composites consist in a thin film of electro-active polymers (Nafion® for example) sandwiched between two metallic electrodes. They can be used as sensors or actuators. The polymer is saturated with water, which causes a complete dissociation and the release of small cations. The strip undergoes large bending motions when it is submitted to an orthogonal electric field and vice versa. We used a continuous medium approach and a coarse grain model; the system is depicted as a deformable porous medium in which flows an ionic solution.We write microscale balance laws and thermodynamic relations for each phase, then for the complete material using an average technique. Entropy production, then constitutive equations are deduced: a Kelvin-Voigt stress-strain relation, generalized Fourier’s and Darcy’s laws and a Nernst-Planck equation.We applied this model to a cantilever electro-active polymer strip undergoing a continuous potential difference (static case); a shear force may be applied to the free end to prevent its displacement. Applied forces and deflection are calculated using a beam model in large displacements. The results obtained are in good agreement with data published in the literature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ask A, Menzel A, Ristinmaa M (2012) Electrostriction in electro-viscoelastic polymers. Mechanics of Materials 50:9–21Google Scholar
  2. Bar-Cohen Y (2001) Electroactive Polymers (EAP) Actuators Artificial Muscles: Reality, Potential and Challenges. SPIE PressGoogle Scholar
  3. Barclay Satterfield M, Benziger JB (2009) Viscoelastic properties of Nafion at elevated temperature and humidity. J Polym Sci Pol Phys 47(1):11–24Google Scholar
  4. Bauer F, Denneler S, Willert-Porada M (2005) Influence of temperature and humidity on the mechanical properties of Nafion® 117 polymer electrolyte membrane. Journal of Polymer Science Part B: Polymer Physics 43(7):786–795Google Scholar
  5. Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics 26(2):182–185Google Scholar
  6. Biot MA (1977) Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. International Journal of Solids and Structures 13(6):579–597Google Scholar
  7. Brufau-Penella J, Puig-Vidal M, Giannone P, Graziani S, Strazzeri S (2008) Characterization of the harvesting capabilities of an ionic polymer metal composite device. Smart Materials and Structures 17(1):015,009.1–15Google Scholar
  8. Cappadonia M, Erning JW, Stimming U (1994) Proton conduction of Nafion® 117 membrane between 140 K and room temperature. Journal of Electroanalytical Chemistry 376(1):189 –193Google Scholar
  9. Chabé J (2008) Etude des interactions moléculaires polymère-eau lors de l’hydratation de la membrane nafion, électrolyte de référence de la pile à combustible. PhD thesis, Université Joseph Fourier Grenoble IGoogle Scholar
  10. Choi P, Jalani NH, Datta R (2005) Thermodynamics and proton transport in nafion: II. Proton diffusion mechanisms and conductivity. Journal of The Electrochemical Society 152(3):E123–E130Google Scholar
  11. Collette F (2008) Vieillissement hygrothermique du Nafion. PhD thesis, Ecole Nationale Supérieure d’Arts et MétiersGoogle Scholar
  12. Coussy O (1989) Dielectric relaxation studies of water-containing short side chain perfluorosulfonic acid membranes. Eur J Mech A 8(1):1–14Google Scholar
  13. Coussy O (1995) Mechanics of Porous Continua. Wiley, ChichesterGoogle Scholar
  14. de Groot SR, Mazur P (1962) Non-Equilibrium Thermodynamics. North-Holland, AmsterdamGoogle Scholar
  15. Deng ZD, Mauritz KA (1992) Dielectric relaxation studies of water-containing short side chain perfluorosulfonic acid membranes. Macromolecules 25(10):2739–2745Google Scholar
  16. Diu B (2007) Thermodynamique. Hermann, ParisGoogle Scholar
  17. Drew DA (1983) Mathematical modeling of two-phase flow. Annual Review of Fluid Mechanics 15(1):261–291Google Scholar
  18. Drew DA, Passman SL (1998) Theory of Multicomponents Fluids. Springer, New YorkGoogle Scholar
  19. Farinholt K, Leo DJ (2004) Modeling of electromechanical charge sensing in ionic polymer transducers. Mechanics of Materials 36(5):421–433Google Scholar
  20. Gebel G (2000) Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer 41(15):5829–5838Google Scholar
  21. de Gennes PG, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. EPL (Europhysics Letters) 50(4):513–518Google Scholar
  22. Gierke TD, Munn GE, Wilson FC (1981) The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. Journal of Polymer Science: Polymer Physics Edition 19(11):1687–1704Google Scholar
  23. Grimshaw PE, Nussbaum JH, Grodzinsky AJ, Yarmush ML (1990) Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. The Journal of Chemical Physics 93(6):4462–4472Google Scholar
  24. Heitner-Wirguin C (1996) Recent advances in perfluorinated ionomer membranes: structure, properties and applications. Journal of Membrane Science 120(1):1–33Google Scholar
  25. Ishii M, Hibiki T (2006) Thermo-Fluid Dynamics of Two-Phase Flow. Springer, New YorkGoogle Scholar
  26. Jackson JD (1975) Classical Electrodynamics. Wiley & Sons, New YorkGoogle Scholar
  27. Lakshminarayanaiah N (1969) Transport Phenomena in Membranes. Academic Press, New YorkGoogle Scholar
  28. Lhuillier D (2003) A mean-field description of two-phase flows with phase changes. International Journal of Multiphase Flow 29(3):511–525Google Scholar
  29. Maugin GA (1988) Continuum Mechanics of Electromagnetic Solids. North-Holland, AmsterdamGoogle Scholar
  30. Mojarrad M, Shahinpoor M (1997) Ion-exchange-metal composite sensor films. Proc SPIE 3042:52–60Google Scholar
  31. Nemat-Nasser S (2002) Micromechanics of actuation of ionic polymer-metal composites. Journal of Applied Physics 92(5):2899–2915Google Scholar
  32. Nemat-Nasser S, Li J (2000) Electromechanical response of ionic polymer-metal composites. Journal of Applied Physics 87(7):3321–3331Google Scholar
  33. Newbury KM (2002) Characterization, modeling and control of ionic-polymer transducers. PhD thesis, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, VirginiaGoogle Scholar
  34. Newbury KM, Leo DJ (2001) Mechanical work and electromechanical coupling in ionic polymer bender actuators. In: ASME Adative Structures and Materials SymposiumGoogle Scholar
  35. Newbury KM, Leo DJ (2002) Electromechanical modeling and characterization of ionic polymer benders. Journal of Intelligent Material Systems and Structures 13(1):51–60Google Scholar
  36. Newbury KM, Leo DJ (2003) Linear electromechanical model of ionic polymer transducers - Part II: Experimental validation. Journal of Intelligent Material Systems and Structures 14(6):343–357Google Scholar
  37. Nigmatulin RI (1979) Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int J Multiphase Flow 5:353–385Google Scholar
  38. Nigmatulin RI (1990) Dynamics of Multiphase Media, vol 1 and 2. Hemisphere, New YorkGoogle Scholar
  39. Shahinpoor M (1994) Continuum electromechanics of ionic polymeric gels as artificial muscles for robotic applications. Smart Materials and Structures 3:367–372Google Scholar
  40. Shahinpoor M (1999) Electromechanics of ionoelastic beams as electrically controllable artificial muscles. Proc of SPIE 3669Google Scholar
  41. Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review. Smart Materials and Structures 7(6):R15–R30Google Scholar
  42. Silberstein MN (2008) Mechanics of proton exchange membranes: Time, temperature and hydration dependence of the stress-strain behavior of persulfonated polytetrafluoroethylene. PhD thesis, Massachusetts Institut of Technology, Cambridge, MAGoogle Scholar
  43. Silberstein MN, Boyce MC (2010) Constitutive modeling of the rate, temperature, and hydration dependent deformation response of Nafion to monotonic and cyclic loading. J Power Sources 195(17):5692–5706Google Scholar
  44. Silberstein MN, Pillai PV, Boyce MC (2011) Biaxial elastic-viscoplastic behavior of Nafion membranes. Polymer 52(2):529–539Google Scholar
  45. Tixier M, Pouget J (2014) Conservation laws of an electro-active polymer. Continuum Mechanics and Thermodynamics 26(4):465–481Google Scholar
  46. Tixier M, Pouget J (2016) Constitutive equations for an electroactive polymer. Continuum Mechanics and Thermodynamics 28(4):1071–1091Google Scholar
  47. Todokoru S, Yamagami S, Takamori T, Oguro K (2000) Modeling of Nafion-Pt composite actuators (ICPF) by ionic motion. Proc of SPIE 3987Google Scholar
  48. Vokoun D, Qingsong H, Heller L, Min Y, Zhen DD (2015) Modeling of IPMC cantilever’s displacements and blocking forces. Journal of Bionic Engineering 12(1):142–151Google Scholar
  49. Yoon WJ, Reinhall PG, Seibel EJ (2007) Analysis of electro-active polymer bending: A component in a low cost ultrathin scanning endoscope. Sensors and Actuators A: Physical 133(2):506–517Google Scholar
  50. Zawodzinski TA, Neeman M, Sillerud LO, Gottesfeld S (1991) Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. The Journal of Physical Chemistry 95(15):6040–6044Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département de PhysiqueUniversité de Versailles Saint QuentinVersaillesFrance
  2. 2.Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d’AlembertSorbonne UniversitéParisFrance

Personalised recommendations