Skip to main content

Second Gradient Continuum: Role of Electromagnetism Interacting with the Gravitation on the Presence of Torsion and Curvature

  • Chapter
  • First Online:
Book cover Generalized Models and Non-classical Approaches in Complex Materials 1

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 89))

  • 1566 Accesses

Abstract

The goal of this paper is to link the geometric variables of strain gradient continuum with electromagnetic fields. For that purpose, we derive the electromagnetic wave equation within a Riemann-Cartan continuum where curvature and torsion are present. We also show that the gravitational and electromagnetic fields are respectively identified as geometric objects of such a continuum, namely the curvature \( \Re_{\alpha \beta \lambda }^{\gamma } \) for gravitation which is a classical result, and the torsion \( \aleph_{\alpha \beta }^{\gamma } \) as source of electromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonio Tamarasselvame N, Rakotomanana L (2011) On the form-invariance of Lagrangean function for higher gradient continuum. In: Altenbach H, Maugin GA, Erofeev V (eds) Mechanics of Generalized Continua, Heidelberg, ASM, vol 7, pp 291–322

    Google Scholar 

  • Charap JM, Duff MJ (1977) Gravitational effects on Yang-Mills topology. Physics Letters 69B(4):445–447

    Google Scholar 

  • Cho YM (1976) Einstein Lagrangian as the translational Yang-Mills Lagrangian. Physical Review D 14(10):2521–2525

    Google Scholar 

  • de Andrade VC, Pereira JG (1999) Torsion and the electromagnetic field. International Journal of Modern Physics D 8(2):141–151

    Google Scholar 

  • Dias L, Moraes F (2005) Effects of torsion on electromagnetic fields. Brazilian Journal of Physics 35(3A):636–640

    Google Scholar 

  • Fernado J, Giglio T, Rodrigues Jr WA (2012) Gravitation and electromagnetism as geometrical objects of Riemann-Cartan spacetime structure. Advanced Applied Clifford Algebras 22:640–664

    Google Scholar 

  • Fernandez-Nunez I, Bulashenko O (2016) Anisotropic metamaterial as an anlogue of a black hole. Physics Letters A 380:1–8

    Google Scholar 

  • Fumeron S, Pereira E, Moraes F (2015) Generation of optical vorticity from topological defects. Physica B 476:19–23

    Google Scholar 

  • Futhazar G, Le Marrec L, Rakotomanana LR (2014) Covariant gradient continua applied to wave propagation within defected material. Archive for Applied Mechanics 84(9–11):1339–1356

    Google Scholar 

  • Hammond RT (1987) Gravitation, Torsion, and Electromagnetism. General Relativity and Gravitation 20(8):813–827

    Google Scholar 

  • Hammond RT (1989) Einstein-Maxwell theory from torsion. Classical Quantum and Gravitation 6:195–198

    Google Scholar 

  • Hehl FW (2008) Maxwell’s equations in Minkowski’s world: their premetric generalization and the electromagnetic energy-momentum tensor. Annalen der Physik 17(9-10):691–704

    Google Scholar 

  • Hehl FW, von der Heyde P (1973) Spin and the structure of spacetime. Annales de l’Institut Henri Poincaré, section A 19(2):179–196

    Google Scholar 

  • Hehl FW, von der Heyde P, Kerlick JM G D ans Nester (1976) General relativity with spin and torsion: Foundations and prospects. Reviews of Modern Physics 48(3):393–416

    Google Scholar 

  • Kleinert H (2008) Multivalued Fields: in Condensed matter, Electromagnetism, and Gravitation. World Scientific, Singapore

    Google Scholar 

  • Kovetz A (2000) Electromagnetic Theory. Oxford University Press, Oxford

    Google Scholar 

  • Maugin G (1993) Material Inhomogeneities in Elasticity. Chapman and Hall, London

    Google Scholar 

  • Maugin GA (1978) Exact relativistic theory of wave propagation in prestressed nonlinear elastic solids. Annales de l’Institut Henri Poincaré, section A 28(2):155–185

    Google Scholar 

  • Milonni PW, Boyd RW (2010) Momentum of light in a dielectric medium. Adv Opt Photon 2(4):519–553

    Google Scholar 

  • Obukhov YN (2008) Electromagnetic energy and momentum in moving media. Annalen der Physik 17(9-10):830–851

    Google Scholar 

  • Obukhov YN, Hehl FW (2003) Electromagnetic energy-momentum and forces in matter. Physics Letters A 311:277–284

    Google Scholar 

  • Plebanski J (1960) Electromagnetic waves in gravitational fields. Physical Review 118(5):1396–1408

    Google Scholar 

  • Poplawski NJ (2010) Torsion as electromagnetism and spin. International Journal of Theoretical Physics 49(7):1481–1488

    Google Scholar 

  • Prasanna AR (1975) Maxwell’s equations in Riemann-Cartan space U 4. Physics Letters A 54(1):17–18

    Google Scholar 

  • Puntigam RA, Lämmerzahl C, Hehl FW (1997) Maxwell’s theory on a post-Riemannian spacetime and the equivalence principle. Classical and Quantum Gravitation 14:1347–1356

    Google Scholar 

  • Rakotomanana RL (2003) A Geometric Approach to Thermomechanics of Dissipating Continua. Progress in Mathematical Physics Series, Birkhaüser, Boston

    Google Scholar 

  • Schutzhold R, Plunien G, Soff G (2002) Dielectric black hole analogs. Physical Review Letters 88(6):061,101/1–061,101/4

    Google Scholar 

  • Smalley LL (1986) On the extension of geometric optics from Riemaniann to Riemann-Cartan spacetime. Physics Letters A 117(6):267–269

    Google Scholar 

  • Smalley LL, Krisch JP (1992) Minimal coupling of electromagnetic fields in Riemann-Cartan spacetimes for perfect fluids with spin density. Journal of Mathematical Physics 33(3):1073–1081

    Google Scholar 

  • Sotiriou TP, Liberati S (2007) Metric-affine f (R) theories of gravity. Annals of Physics 322:935–966

    Google Scholar 

  • Tiwari RN, Ray S (1997) Static spherical charged dust electromagnetic mass models in Einstein- Cartan theory. General Relativity and Gravitation 29(6):683–690

    Google Scholar 

  • Vandyck MA (1996) Maxwell’s equations in spaces with non-metricity and torsion. J Physics A : Math Gen 29:2245–2255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalaonirina R. Rakotomanana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rakotomanana, L.R. (2018). Second Gradient Continuum: Role of Electromagnetism Interacting with the Gravitation on the Presence of Torsion and Curvature. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 1. Advanced Structured Materials, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-319-72440-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72440-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72439-3

  • Online ISBN: 978-3-319-72440-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics