Skip to main content

A New Class of Models to Describe the Response of Electrorheological and Other Field Dependent Fluids

  • Chapter
  • First Online:
Generalized Models and Non-classical Approaches in Complex Materials 1

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 89))

Abstract

We propose a new class of models for electrorheological fluids. While the standard constitutive relations for electrorheological fluids are based on the assumption that the stress is a function of the symmetric part of the velocity gradient and the intensity of the electric field, we formulate constitutive relations in an implicit way. The stress, the symmetric part of the velocity gradient and the intensity of the electric field are linked via a tensorial implicit equation. The potential benefit of the new class of models is investigated by the analysis of a simple shear flow in a transverse electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Jdayil B, Brunn PO (1997) Study of the flow behavior of electrorheological fluids at shear- and flow-mode. Chem Eng Process 36(4):281–289

    Google Scholar 

  • Arvanitakis A (2017) On implicit constitutive relations in elastic ferroelectrics. Z angew Math Phys 68(5)

    Google Scholar 

  • Barnes HA, Hutton JF, Walters K (1989) An Introduction to Rheology. Elsevier, Amsterdam

    Google Scholar 

  • Belza T, Pavlínek V, Sáha P, Quadrat O (2008) Effect of field strength and temperature on viscoelastic properties of electrorheological suspensions of urea-modified silica particles. Colloid Surf APhysicochem Eng Asp 316(1-3):89–94

    Google Scholar 

  • Bewley LV (1948) Two-Dimensional Fields in Electrical Engineering. Macmillan, New York

    Google Scholar 

  • Boltenhagen P, Hu Y, Matthys EF, Pine DJ (1997) Observation of bulk phase separation and coexistence in a sheared micellar solution. Phys Rev Lett 79:2359–2362

    Google Scholar 

  • Bulíček M, Gwiazda P, Málek J, Świerczewska-Gwiazda A (2009) On steady flows of incompressible fluids with implicit power-law-like rheology. Adv Calc Var 2(2):109–136

    Google Scholar 

  • Bulíček M, Gwiazda P, Málek J, Świerczewska-Gwiazda A (2012) On unsteady flows of implicitly constituted incompressible fluids. SIAM J Math Anal 44(4):2756–2801

    Google Scholar 

  • Bustamante R, Rajagopal KR (2013a) On a new class of electro-elastic bodies. II. Boundary value problems. Proc R Soc A: Math Phys Eng Sci 469(2155)

    Google Scholar 

  • Bustamante R, Rajagopal KR (2013b) On a new class of electroelastic bodies. I. Proc R Soc A: Math Phys Eng Sci 469(2149)

    Google Scholar 

  • Bustamante R, Rajagopal KR (2015) Implicit constitutive relations for nonlinear magnetoelastic bodies. Proc R Soc A: Math Phys Eng Sci 471(2175)

    Google Scholar 

  • Bustamante R, Rajagopal KR (2017) Implicit equations for thermoelastic bodies. Int J Non-Linear Mech 92:144–152

    Google Scholar 

  • Ceccio SL, Wineman AS (1994) Influence of orientation of electric field on shear flow of electrorheological fluids. J Rheol 38(3):453–463

    Google Scholar 

  • Chapman S, Cowling TG (1990) The Mathematical Theory of Nonuniform Gases, 3rd edn. Cambridge Mathematical Library, Cambridge University Press, Cambridge, an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, In co-operation with D. Burnett, With a foreword by Carlo Cercignani

    Google Scholar 

  • Choi YT, Cho JU, Choi SB, Wereley NM (2005) Constitutive models of electrorheological and magnetorheological fluids using viscometers. Smart Mater Struct 14(5):1025–1036

    Google Scholar 

  • Coleman BD, Markovitz H, Noll W (1966) Viscometric Flows of Non-Newtonian Fluids. Theory and Experiment. Springer-Verlag, Berlin

    Google Scholar 

  • Conrad H, Sprecher AF, Choi Y, Chen Y (1991) The temperature dependence of the electrical properties and strength of electrorheological fluids. J Rheol 35(7):1393–1410

    Google Scholar 

  • David J, Filip P (2004) Phenomenological modelling of non-monotonous shear viscosity functions. Appl Rheol 14(2):82–88

    Google Scholar 

  • Diening L, Kreuzer C, Süli E (2013) Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J Numer Anal 51(2):984–1015

    Google Scholar 

  • Eringen AC, Maugin GA (1990a) Electrodynamics of Continua, vol I - Foundations and Solid Media. Springer-Verlag, New York

    Google Scholar 

  • Eringen AC, Maugin GA (1990b) Electrodynamics of Continua, vol II- Fluids and Complex Media. Springer-Verlag, New York

    Google Scholar 

  • Galindo-Rosales FJ, Rubio-Hernández FJ, Sevilla A (2011) An apparent viscosity function for shear thickening fluids. J Non-Newton Fluid Mech 166(5–6):321–325

    Google Scholar 

  • Gamota DR, Filisko FE (1991) Dynamic mechanical studies of electrorheological materials – moderate frequencies. J Rheol 35(3):399–425

    Google Scholar 

  • Gast AP, Zukoski CF (1989) Electrorheological fluids as colloidal suspensions. Adv Colloid Interface Sci 30:153–202

    Google Scholar 

  • Gavin HP, Hanson RD, Filisko FE (1996) Electrorheological dampers 1. Analysis and design. J Appl Mech-Trans ASME 63(3):669–675

    Google Scholar 

  • Halsey TC, Martin JE, Adolf D (1992) Rheology of electrorheological fluids. Phys Rev Lett 68(10):1519–1522

    Google Scholar 

  • Janečka A, Průša V (2015) Perspectives on using implicit type constitutive relations in the modelling of the behaviour of non-Newtonian fluids. AIP Conference Proceedings 1662:020003

    Google Scholar 

  • Jeffery GB (1921) Plane stress and plane strain in bipolar co-ordinates. Philos Trans R Soc A-Math Phys Eng Sci 221:265–293

    Google Scholar 

  • Kollias A, Dimarogonas A (1993) Properties of zeolite- and cornstarch-based electrorheological fluids at high shear strain rates. J Intell Mater Syst Struct 4(4):519–526

    Google Scholar 

  • Krztoń-Maziopa A, Wyciślik H, Płocharski J (2005) Study of electrorheological properties of poly(p-phenylene) dispersions. J Rheol 49(6):1177–1192

    Google Scholar 

  • Kulvait V, Málek J, Rajagopal KR (2013) Anti-plane stress state of a plate with a V-notch for a new class of elastic solids. Int J Frac 179(1–2):59–73

    Google Scholar 

  • Le Roux C, Rajagopal KR (2013) Shear flows of a new class of power-law fluids. Appl Math 58(2):153–177

    Google Scholar 

  • Liu YD, Choi HJ (2012) Electrorheological fluids: smart soft matter and characteristics. Soft Matter 8(48):11,961–11,978

    Google Scholar 

  • Love AEH (1924) Some electrostatic distributions in two dimensions. Proceedings of the London Mathematical Society s2-22(1):337–369

    Google Scholar 

  • Málek J, Průša V, Rajagopal KR (2010) Generalizations of the Navier–Stokes fluid from a new perspective. Int J Eng Sci 48(12):1907–1924

    Google Scholar 

  • Maringová E, Žabenský J (2018) On a Navier–Stokes–Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions. Nonlinear Anal - Real World Appl 41:152–178

    Google Scholar 

  • Martin JE, Adolf D, Halsey TC (1994) Electrorheology of a model colloidal fluid. J Colloid Interface Sci 167(2):437–452

    Google Scholar 

  • Pao YH (1978) Mechanics Today, vol 4, Pergamon Press, New York, chap Electromagnetic forces in deformable continua, pp 209–305

    Google Scholar 

  • Penfield P, Haus HA (1967) Electrodynamics of Moving Media. MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Perlácová T, Průša V (2015) Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J Non-Newton Fluid Mech 216:13–21

    Google Scholar 

  • Průša V, Rajagopal KR (2012a) Flow of an electrorheological fluid between eccentric rotating cylinders. Theor Comput Fluid Dyn 26(1-4):1–21

    Google Scholar 

  • Průša V, Rajagopal KR (2012b) On implicit constitutive relations for materials with fading memory. J Non-Newton Fluid Mech 181–182:22–29

    Google Scholar 

  • Rajagopal KR (2003) On implicit constitutive theories. Appl Math 48(4):279–319

    Google Scholar 

  • Rajagopal KR (2006) On implicit constitutive theories for fluids. J Fluid Mech 550:243–249

    Google Scholar 

  • Rajagopal KR, Růžička M (1996) On the modeling of electrorheological materials. Mech Res Commun 23(4):401–407

    Google Scholar 

  • Rajagopal KR, Růžička M (2001) Mathematical modeling of electrorheological materials. Contin Mech Thermodyn 13(1):59–78

    Google Scholar 

  • Rajagopal KR, Saccomandi G (2016) A novel approach to the description of constitutive relations. Frontiers in Materials 3:36

    Google Scholar 

  • Rajagopal KR, Srinivasa AR (2007) On the response of non-dissipative solids. Proc R Soc Lond, Ser A, Math Phys Eng Sci 463(2078):357–367

    Google Scholar 

  • Rajagopal KR, Srinivasa AR (2008) On the thermodynamics of fluids defined by implicit constitutive relations. Z angew Math Phys 59(4):715–729

    Google Scholar 

  • Rajagopal KR, Srinivasa AR (2009) On a class of non-dissipative materials that are not hyperelastic. Proc R Soc Lond Ser A Math Phys Eng Sci 465(2102):493–500

    Google Scholar 

  • Rajagopal KR, Srinivasa AR (2015) Inelastic response of solids described by implicit constitutive relations with nonlinear small strain elastic response. Int J Plast 71:1–9

    Google Scholar 

  • Rajagopal KR, Srinivasa AR (2016) An implicit three-dimensional model for describing the inelastic response of solids undergoing finite deformation. Z angew Math Phys 67(4)

    Google Scholar 

  • Rajagopal KR,Wineman AS (1992) Flow of electrorheological materials. Acta Mech 91(1-2):57–75

    Google Scholar 

  • Rosenweig RE (1985) Ferrohydrodynamics. Cambridge Monographs on Mechanics, Cambridge University Press

    Google Scholar 

  • Růžička M (2000) Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol 1748. Springer-Verlag, Berlin

    Google Scholar 

  • Růžička M (2004) Modeling, mathematical and numerical analysis of electrorheological fluids. Appl Math, Praha 49(6):565–609

    Google Scholar 

  • Smith GF (1971) On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int J Eng Sci 9(10):899–916

    Google Scholar 

  • Spencer AJM (1971) Theory of invariants. In: Eringen AC (ed) Continuum Physics, vol I, Academic Press, New York, pp 239–353

    Google Scholar 

  • Tanner RI, Walters K (1998) Rheology: an Historical Perspective, Rheology Series, vol 7. Elsevier, Amsterdam

    Google Scholar 

  • Winslow WM (1949) Induced fibration of suspensions. J Appl Phys 20(12):1137–1140

    Google Scholar 

  • Zheng QS (1994) Theory of representations for tensor functions – A unified invariant approach to constitutive equations. Applied Mechanics Reviews 47(11):545–587

    Google Scholar 

  • Zukoski CF (1993) Material properties and the electrorheological response. Annu Rev of Mater Sci 23(1):45–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vít Průša .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Průša, V., Rajagopal, K.R. (2018). A New Class of Models to Describe the Response of Electrorheological and Other Field Dependent Fluids. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 1. Advanced Structured Materials, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-319-72440-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72440-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72439-3

  • Online ISBN: 978-3-319-72440-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics