A New Class of Models to Describe the Response of Electrorheological and Other Field Dependent Fluids

  • Vít Průša
  • Kumbakonam R. Rajagopal
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 89)


We propose a new class of models for electrorheological fluids. While the standard constitutive relations for electrorheological fluids are based on the assumption that the stress is a function of the symmetric part of the velocity gradient and the intensity of the electric field, we formulate constitutive relations in an implicit way. The stress, the symmetric part of the velocity gradient and the intensity of the electric field are linked via a tensorial implicit equation. The potential benefit of the new class of models is investigated by the analysis of a simple shear flow in a transverse electric field.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abu-Jdayil B, Brunn PO (1997) Study of the flow behavior of electrorheological fluids at shear- and flow-mode. Chem Eng Process 36(4):281–289Google Scholar
  2. Arvanitakis A (2017) On implicit constitutive relations in elastic ferroelectrics. Z angew Math Phys 68(5)Google Scholar
  3. Barnes HA, Hutton JF, Walters K (1989) An Introduction to Rheology. Elsevier, AmsterdamGoogle Scholar
  4. Belza T, Pavlínek V, Sáha P, Quadrat O (2008) Effect of field strength and temperature on viscoelastic properties of electrorheological suspensions of urea-modified silica particles. Colloid Surf APhysicochem Eng Asp 316(1-3):89–94Google Scholar
  5. Bewley LV (1948) Two-Dimensional Fields in Electrical Engineering. Macmillan, New YorkGoogle Scholar
  6. Boltenhagen P, Hu Y, Matthys EF, Pine DJ (1997) Observation of bulk phase separation and coexistence in a sheared micellar solution. Phys Rev Lett 79:2359–2362Google Scholar
  7. Bulíček M, Gwiazda P, Málek J, Świerczewska-Gwiazda A (2009) On steady flows of incompressible fluids with implicit power-law-like rheology. Adv Calc Var 2(2):109–136Google Scholar
  8. Bulíček M, Gwiazda P, Málek J, Świerczewska-Gwiazda A (2012) On unsteady flows of implicitly constituted incompressible fluids. SIAM J Math Anal 44(4):2756–2801Google Scholar
  9. Bustamante R, Rajagopal KR (2013a) On a new class of electro-elastic bodies. II. Boundary value problems. Proc R Soc A: Math Phys Eng Sci 469(2155)Google Scholar
  10. Bustamante R, Rajagopal KR (2013b) On a new class of electroelastic bodies. I. Proc R Soc A: Math Phys Eng Sci 469(2149)Google Scholar
  11. Bustamante R, Rajagopal KR (2015) Implicit constitutive relations for nonlinear magnetoelastic bodies. Proc R Soc A: Math Phys Eng Sci 471(2175)Google Scholar
  12. Bustamante R, Rajagopal KR (2017) Implicit equations for thermoelastic bodies. Int J Non-Linear Mech 92:144–152Google Scholar
  13. Ceccio SL, Wineman AS (1994) Influence of orientation of electric field on shear flow of electrorheological fluids. J Rheol 38(3):453–463Google Scholar
  14. Chapman S, Cowling TG (1990) The Mathematical Theory of Nonuniform Gases, 3rd edn. Cambridge Mathematical Library, Cambridge University Press, Cambridge, an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, In co-operation with D. Burnett, With a foreword by Carlo CercignaniGoogle Scholar
  15. Choi YT, Cho JU, Choi SB, Wereley NM (2005) Constitutive models of electrorheological and magnetorheological fluids using viscometers. Smart Mater Struct 14(5):1025–1036Google Scholar
  16. Coleman BD, Markovitz H, Noll W (1966) Viscometric Flows of Non-Newtonian Fluids. Theory and Experiment. Springer-Verlag, BerlinGoogle Scholar
  17. Conrad H, Sprecher AF, Choi Y, Chen Y (1991) The temperature dependence of the electrical properties and strength of electrorheological fluids. J Rheol 35(7):1393–1410Google Scholar
  18. David J, Filip P (2004) Phenomenological modelling of non-monotonous shear viscosity functions. Appl Rheol 14(2):82–88Google Scholar
  19. Diening L, Kreuzer C, Süli E (2013) Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J Numer Anal 51(2):984–1015Google Scholar
  20. Eringen AC, Maugin GA (1990a) Electrodynamics of Continua, vol I - Foundations and Solid Media. Springer-Verlag, New YorkGoogle Scholar
  21. Eringen AC, Maugin GA (1990b) Electrodynamics of Continua, vol II- Fluids and Complex Media. Springer-Verlag, New YorkGoogle Scholar
  22. Galindo-Rosales FJ, Rubio-Hernández FJ, Sevilla A (2011) An apparent viscosity function for shear thickening fluids. J Non-Newton Fluid Mech 166(5–6):321–325Google Scholar
  23. Gamota DR, Filisko FE (1991) Dynamic mechanical studies of electrorheological materials – moderate frequencies. J Rheol 35(3):399–425Google Scholar
  24. Gast AP, Zukoski CF (1989) Electrorheological fluids as colloidal suspensions. Adv Colloid Interface Sci 30:153–202Google Scholar
  25. Gavin HP, Hanson RD, Filisko FE (1996) Electrorheological dampers 1. Analysis and design. J Appl Mech-Trans ASME 63(3):669–675Google Scholar
  26. Halsey TC, Martin JE, Adolf D (1992) Rheology of electrorheological fluids. Phys Rev Lett 68(10):1519–1522Google Scholar
  27. Janečka A, Průša V (2015) Perspectives on using implicit type constitutive relations in the modelling of the behaviour of non-Newtonian fluids. AIP Conference Proceedings 1662:020003Google Scholar
  28. Jeffery GB (1921) Plane stress and plane strain in bipolar co-ordinates. Philos Trans R Soc A-Math Phys Eng Sci 221:265–293Google Scholar
  29. Kollias A, Dimarogonas A (1993) Properties of zeolite- and cornstarch-based electrorheological fluids at high shear strain rates. J Intell Mater Syst Struct 4(4):519–526Google Scholar
  30. Krztoń-Maziopa A, Wyciślik H, Płocharski J (2005) Study of electrorheological properties of poly(p-phenylene) dispersions. J Rheol 49(6):1177–1192Google Scholar
  31. Kulvait V, Málek J, Rajagopal KR (2013) Anti-plane stress state of a plate with a V-notch for a new class of elastic solids. Int J Frac 179(1–2):59–73Google Scholar
  32. Le Roux C, Rajagopal KR (2013) Shear flows of a new class of power-law fluids. Appl Math 58(2):153–177Google Scholar
  33. Liu YD, Choi HJ (2012) Electrorheological fluids: smart soft matter and characteristics. Soft Matter 8(48):11,961–11,978Google Scholar
  34. Love AEH (1924) Some electrostatic distributions in two dimensions. Proceedings of the London Mathematical Society s2-22(1):337–369Google Scholar
  35. Málek J, Průša V, Rajagopal KR (2010) Generalizations of the Navier–Stokes fluid from a new perspective. Int J Eng Sci 48(12):1907–1924Google Scholar
  36. Maringová E, Žabenský J (2018) On a Navier–Stokes–Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions. Nonlinear Anal - Real World Appl 41:152–178Google Scholar
  37. Martin JE, Adolf D, Halsey TC (1994) Electrorheology of a model colloidal fluid. J Colloid Interface Sci 167(2):437–452Google Scholar
  38. Pao YH (1978) Mechanics Today, vol 4, Pergamon Press, New York, chap Electromagnetic forces in deformable continua, pp 209–305Google Scholar
  39. Penfield P, Haus HA (1967) Electrodynamics of Moving Media. MIT Press, Cambridge, MassachusettsGoogle Scholar
  40. Perlácová T, Průša V (2015) Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J Non-Newton Fluid Mech 216:13–21Google Scholar
  41. Průša V, Rajagopal KR (2012a) Flow of an electrorheological fluid between eccentric rotating cylinders. Theor Comput Fluid Dyn 26(1-4):1–21Google Scholar
  42. Průša V, Rajagopal KR (2012b) On implicit constitutive relations for materials with fading memory. J Non-Newton Fluid Mech 181–182:22–29Google Scholar
  43. Rajagopal KR (2003) On implicit constitutive theories. Appl Math 48(4):279–319Google Scholar
  44. Rajagopal KR (2006) On implicit constitutive theories for fluids. J Fluid Mech 550:243–249Google Scholar
  45. Rajagopal KR, Růžička M (1996) On the modeling of electrorheological materials. Mech Res Commun 23(4):401–407Google Scholar
  46. Rajagopal KR, Růžička M (2001) Mathematical modeling of electrorheological materials. Contin Mech Thermodyn 13(1):59–78Google Scholar
  47. Rajagopal KR, Saccomandi G (2016) A novel approach to the description of constitutive relations. Frontiers in Materials 3:36Google Scholar
  48. Rajagopal KR, Srinivasa AR (2007) On the response of non-dissipative solids. Proc R Soc Lond, Ser A, Math Phys Eng Sci 463(2078):357–367Google Scholar
  49. Rajagopal KR, Srinivasa AR (2008) On the thermodynamics of fluids defined by implicit constitutive relations. Z angew Math Phys 59(4):715–729Google Scholar
  50. Rajagopal KR, Srinivasa AR (2009) On a class of non-dissipative materials that are not hyperelastic. Proc R Soc Lond Ser A Math Phys Eng Sci 465(2102):493–500Google Scholar
  51. Rajagopal KR, Srinivasa AR (2015) Inelastic response of solids described by implicit constitutive relations with nonlinear small strain elastic response. Int J Plast 71:1–9Google Scholar
  52. Rajagopal KR, Srinivasa AR (2016) An implicit three-dimensional model for describing the inelastic response of solids undergoing finite deformation. Z angew Math Phys 67(4)Google Scholar
  53. Rajagopal KR,Wineman AS (1992) Flow of electrorheological materials. Acta Mech 91(1-2):57–75Google Scholar
  54. Rosenweig RE (1985) Ferrohydrodynamics. Cambridge Monographs on Mechanics, Cambridge University PressGoogle Scholar
  55. Růžička M (2000) Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol 1748. Springer-Verlag, BerlinGoogle Scholar
  56. Růžička M (2004) Modeling, mathematical and numerical analysis of electrorheological fluids. Appl Math, Praha 49(6):565–609Google Scholar
  57. Smith GF (1971) On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int J Eng Sci 9(10):899–916Google Scholar
  58. Spencer AJM (1971) Theory of invariants. In: Eringen AC (ed) Continuum Physics, vol I, Academic Press, New York, pp 239–353Google Scholar
  59. Tanner RI, Walters K (1998) Rheology: an Historical Perspective, Rheology Series, vol 7. Elsevier, AmsterdamGoogle Scholar
  60. Winslow WM (1949) Induced fibration of suspensions. J Appl Phys 20(12):1137–1140Google Scholar
  61. Zheng QS (1994) Theory of representations for tensor functions – A unified invariant approach to constitutive equations. Applied Mechanics Reviews 47(11):545–587Google Scholar
  62. Zukoski CF (1993) Material properties and the electrorheological response. Annu Rev of Mater Sci 23(1):45–78Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPraha 8 – KarlínCzech Republic
  2. 2.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations