Contact Temperature as an Internal Variable of Discrete Systems in Non-Equilibrium

  • Wolfgang Muschik
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 89)


State space and entropy rate of a discrete non-equilibrium system are shortly considered including internal variables and the contact temperature. The concept of internal variables in the context of non-equilibrium thermodynamics of a closed discrete system is discussed. The difference between internal variables and degrees of freedom are repeated, and different types of their evolution equations are mentioned in connection with Gérard A. Maugin’s numerous papers on applications of internal variables. The non-equilibrium contact temperature is recognized as an internal variable and its evolution equation is presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bridgeman PW (1943) The Nature of Thermodynamics. Harvard University Press, Cambridge (Mass)Google Scholar
  2. Kestin J (1966) A Course in Thermodynamics. Blaisdell, Waltham Mass.Google Scholar
  3. Lieneweg F (1976) Handbuch der Technischen Temperaturmessung. Vieweg, BraunschweigGoogle Scholar
  4. Maugin G, Drouot R (1983) Internal variables and the thermodynamics of macromolecule solutions. International Journal of Engineering Science 21(7):705–724Google Scholar
  5. Maugin G, Morro A (1989) Viscoelastic materials with internal variables and dissipation functions. Acta Phys Hung 66:69–78Google Scholar
  6. Maugin GA (1981a) Electromagnetic internal variables in electromagnetic continua. Arch Mech 33:927–935Google Scholar
  7. Maugin GA (1981b) The notion of internal variable in fluid mechanics. In: Complex Fluids and Structurally Complex Flows, Theoretical and Applied Mechanics, Bulgarian Acad.Sci., Sofia, pp 671–676Google Scholar
  8. Maugin GA (1990) Internal variables and dissipative structures. Journal of Non-Equilibrium Thermodynamics 15(2):173–192Google Scholar
  9. Maugin GA (1993) Vectorial internal variables in magnetoelasticity. J Méchanique 18:541–563Google Scholar
  10. Maugin GA (1999a) The Thermomechanics of Nonlinear Irreversible Behaviors, An Introduction. World Scientific, SingaporeGoogle Scholar
  11. Maugin GA (1999b) The Thermomechanics of Nonlinear Irreversible Behaviors. Chap. 4. World Scientific, SingaporeGoogle Scholar
  12. Maugin GA (2013a) Continuum Mechanics Through the Twentieth Century. Springer, DordrechtGoogle Scholar
  13. Maugin GA (2013b) Continuum Mechanics Through the Twentieth Century. Chap. 5.6. Springer, DordrechtGoogle Scholar
  14. Maugin GA, Muschik W (1994a) Thermodynamics with internal variables. I. General Concepts. Journal of Non-Equilibrium Thermodynamics 19(3):217–249Google Scholar
  15. Maugin GA, Muschik W (1994b) Thermodynamics with internal variables. II. Applications. Journal of Non-Equilibrium Thermodynamics 19(3):250–289Google Scholar
  16. Meixner J (1943) Zur Thermodynamik der irreversiblen Prozesse. Z Phys Chem 538:235–263Google Scholar
  17. Muschik W (1977) Empirical foundation and axiomatic treatment of non-equilibrium temperature. Archive for Rational Mechanics and Analysis 66(4):379–401Google Scholar
  18. Muschik W (1990a) Aspects of Non-Equilibrium Thermodynamics. World Scientific, SingaporeGoogle Scholar
  19. Muschik W (1990b) Internal Variables in Non-Equilibrium Thermodynamics. Journal of Non-Equilibrium Thermodynamics 15(2):127–137Google Scholar
  20. Muschik W (1993) Fundamentals of nonequilibrium thermodynamics. In: Muschik W (ed) Non-Equilibrium Thermodynamics with Applications to Solids, Springer, Wien, CISM Courses and Lectures, vol 336Google Scholar
  21. Muschik W (2004) Gérard A. Maugin, 60 years young. Journal of Non-Equilibrium Thermodynamics 29(2):205–208Google Scholar
  22. Muschik W (2009) Contact Quantities and Non-Equilibrium Entropy of Discrete Systems. Journal of Non-Equilibrium Thermodynamics 34:75–92Google Scholar
  23. MuschikW(2014) Contact temperature and internal variables: A glance back, 20 years later. Journal of Non-Equilibrium Thermodynamics 39(3):113–121Google Scholar
  24. Muschik W, Berezovski A (2004) Thermodynamic interaction between two discrete systems in non-equilibrium. Journal of Non-Equilibrium Thermodynamics 29(3):237–255Google Scholar
  25. Muschik W, Brunk G (1977) A concept of non-equilibrium temperature. International Journal of Engineering Science 15(6):377–389Google Scholar
  26. Muschik W, Papenfuß C (1993) An evolution criterion of nonequilibrium thermodynamics and its application to liquid crystals. Physica A: Statistical Mechanics and its Applications 201(4):515–526Google Scholar
  27. Muschik W, v Borzeszkowski HH (2014) Exploitation of the dissipation inequality in general relativistic continuum thermodynamics. Archive of Applied Mechanics 84(9):1517–1531Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations