Nonlinear Schrödinger and Gross - Pitaevskii Equations in the Bohmian or Quantum Fluid Dynamics (QFD) Representation

  • Attila Askar
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 89)


The Quantum Fluid Dynamics (QFD) representation has its foundations in the works of Madelung (1929), De Broglie (1930 - 1950) and Bohm (1950 - 1970). It is an interpretation of quantum mechanics with the goal to find classically identifiable dynamical variables at the sub-particle level. The approach leads to two conservation laws, one for "mass" and one for "momentum", similar to those in hydrodynamics for a compressible fluid with a particular constitutive law. The QFD equations are a set of nonlinear partial differential equations. This paper extends the QFD formalism of quantum mechanics to the Nonlinear Schrödinger and the Gross-Pitaevskii equation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Askar A, Cakmak AS, Rabitz H (1980) Nodal structure and global behavior of scattering wave functions. J Chem Phys 72:5287Google Scholar
  2. Bohm D (1951) Quantum Theory. Prentice-Hall, Inc., New YorkGoogle Scholar
  3. Bohm D, Bub J (1966) A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory. Rev Mod Phys 38:453Google Scholar
  4. Bohr N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 48:696Google Scholar
  5. Braun D (2001) Dissipative Quantum Chaos and Decoherence, Springer Tracts in Modern Physics, vol 172. Springer, Berlin, HeidelbergGoogle Scholar
  6. de Broglie L (1926) Sur la possibilité de relier les phénomènes d’interférences et de diffraction à la théorie des quanta de lumière. Compt Rend Acad Sci Paris 183:447Google Scholar
  7. de Broglie L (1951) Remarques sur la théorie de l’onde pilote. Compt Rend Acad Sci Paris 233:641Google Scholar
  8. de Broglie L (1957) Idées nouvelles concernant les systèmes de corpuscules dans l’interprétation causale de la mécanique ondulatoire. Compt Rend Acad Sci Paris 244:529Google Scholar
  9. de Broglie L (1967) Le mouvement brownien d’une particule dans son onde. Compt Rend Acad Sci Paris 264:1041Google Scholar
  10. Dey B (1998) Multidimensional wave-packet dynamics within the fluid dynamical formulation of the schrödinger equation. J Chem Phys 109:8770Google Scholar
  11. Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 47:777Google Scholar
  12. Eringen AC (1962) Nonlinear Theory of Continuous Media. McGraw-HillGoogle Scholar
  13. Landau LD, Lifschitz EM (1959) Fluid Mechanics. Pergamon PressGoogle Scholar
  14. Madelung E (1926) Quantentheorie in hydrodynamischer Form. Z Physik 40:322–326Google Scholar
  15. Sales F (1999) Quantum fluid dynamics in the lagrangian representation and applications to photodissociation problems. J Chem Phys 111:2423Google Scholar
  16. Schilp PA (ed) (1949) Albert Einstein, Philosopher-Scientist. Library of Living Philosophers, Evanston, IllinoisGoogle Scholar
  17. Styer DF, Balkin MS, Becker KM, Burns MR, Dudley CE, Forth ST, Gaumer JS, Kramer MA, Oertel DC, Park LH, Rinkoski MT, Smith CT, Wotherspoon TD (2002) Nine formulations of quantum mechanics. American Journal of Physics 70(3):288–297Google Scholar
  18. Weiner JH, Askar A (1971) Time-dependent perturbation calculations based on the hydrodynamic analogy to quantum mechanics. J Chem Phys 54:1108Google Scholar
  19. Wyatt RE (2005) Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics, Interdisciplinary Applied Mathematics, vol 28. Springer, New YorkGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Koç UniversitySarıyer, IstanbulTurkey

Personalised recommendations