On the Foundation of a Generalized Nonlocal Extensible Shear Beam Model from Discrete Interactions

  • Attila Kocsis
  • Noël Challamel
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 89)


In this paper a generalized discrete elastica model including bending, normal and shear interactions is developed. Nonlinear static analysis of the discrete model is accomplished, its buckling and post-buckling behavior are thoroughly studied. It is revealed that based on what finite strain theory is used, the discrete model yields a generalized (extensible) Engesser elastica, or a generalized (extensible) Haringx elastica. The local continuum counterparts of these models are also obtained. Then nonlocal models are developed from the introduced flexural, extensible, shearable discrete systems using a continualization technique. Analytical and numerical solutions are given for the discrete and nonlocal models, and it is shown that the scale effects of the discrete models are well captured by the continualized nonlocal models.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work of A. Kocsis was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.


  1. Alibert J, Della Corte A, Giorgio I, Battista A (2017) Extensional elastica in large deformation as Γ-limit of a discrete 1D mechanical system. Z Angew Math Phys 68(42):1–19Google Scholar
  2. Atanackovic TM (1997) Stability theory of elastic rods, Series on Stability, Vibration and Control of Systems, Series A: Volume 1. World Scientific, SingaporeGoogle Scholar
  3. Attard M (2003) Finite strain-beam theory. Int J Solids Structures 40:4563–4584Google Scholar
  4. Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, OxfordGoogle Scholar
  5. Bresse JAC (1859) Cours de mécanique appliquée – Résistance des matériaux et stabilité des constructions. Gauthier-Villars, ParisGoogle Scholar
  6. Cauchy A (1823) Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non ´lastiques. Bulletin des sciences par la Société Philomatique de Paris pp 9–13Google Scholar
  7. Cauchy A (1828) Sur l’équilibre et le mouvement d’un système de points matériels sollicités par des forces d’attraction ou de répulsion mutuelle. Exercices de Mathématiques 3:188–212Google Scholar
  8. Challamel N,Wang CM, Elishakoff I (2014) Discrete systems behave as nonlocal structural elements: Bending, buckling and vibration analysis. European Journal of Mechanics - A 44:125–135Google Scholar
  9. Challamel N, Kocsis A, Wang CM (2015a) Discrete and non-local elastica. International Journal of Non-Linear Mechanics 77:128–140Google Scholar
  10. Challamel N, Picandet V, Collet B, Michelitsch T, Elishakoff I, M WC (2015b) Revisiting finite difference and finite element methods applied to structural mechanics within enriched continua. Eur J Mech A/Solids 53:107–120Google Scholar
  11. Dell’Isola F, Maier G, Perego U, Andreaus U, Esposito R, Forest S (2014) The complete works of Gabrio Piola: Volume i commented english translation. In: Advanced Structured Materials, Springer, vol 38Google Scholar
  12. Dell’Isola F, Andreaus U, Placidi L (2015) At the origins and in the vanguard of peridynamics, nonlocal and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola. Mathematics and Mechanics of Solids 20(8):887–928Google Scholar
  13. Domokos G (1992) Buckling of a cord under tension. Acta Technica Academiae Scientiarum Hungaricae Civil Engineering 104:63–73Google Scholar
  14. Domokos G, Gáspár Z (1995) A global, direct algorithm for path-following and active static control of elastic bar structures. Mechanics of Structures and Machines 23:549–571Google Scholar
  15. Duan W, Challamel N, Wang CM, Ding Z (2013) Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams. J Applied Physics 114(104312):1–11Google Scholar
  16. Engesser F (1891) Die Knickfestigkeit gerader Stäbe. Zentralblatt der Bauverwaltung 11:483Google Scholar
  17. Eringen A (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710Google Scholar
  18. Eringen AC (2002) Nonlocal Continuum Field Theories. Springer-VerlagGoogle Scholar
  19. Euler L (1744) Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti. Reprint in Opera Omnia I 24:231–297Google Scholar
  20. Foce F (1995) The theory of elasticity between molecular and continuum approach in the xix century. In: Radelet de Grave P, Benvenuto E (eds) Between Mechanics and Architecture, Birkhaüser-VerlagGoogle Scholar
  21. Föppl A (1897) Vorlesungen über Technische Mechanik – Dritter Band. Festigkeitslehre, LepizigGoogle Scholar
  22. Gáspár Z, Domokos G, Szeberényi I (1997) A parallel algorithm for the global computation of elastic bar structures. Computer Assisted Mechanics and Engineering Sciences 4:55–68Google Scholar
  23. Genovese D (2017) Tensile buckling in shear deformable rods. Int J Struct Stab Dyn 17(6):1750,063Google Scholar
  24. Goto Y, Yoshimitsu T, Obata M (1990) Elliptic integral solutions of plane elastica with axial and shear deformations. Int J Solids Structures 26(4):375–390Google Scholar
  25. Haringx JA (1942) On the Buckling and Lateral Rigidity of Helical Springs. Proc Konink Ned Akad Wet 45:533Google Scholar
  26. Hencky H (1920) Über die angenäherte Lösung von Stabilitätsproblemen im Raummittels der elastischen Gelenkkette. Der Eisenbau 11:437–452, in GermanGoogle Scholar
  27. Huang H, Kardomateas G (2002) Buckling and initial post-buckling behavior of sandwich beams including transverse shear. AIAA Journal 40(11):2331–2335Google Scholar
  28. Humer A (2013) Exact solutions for the buckling and post-buckling of shear-deformable beams. Acta Mechanica 224:1493–1525Google Scholar
  29. Kocsis A (2016) Buckling analysis of the discrete planar cosserat rod. International Journal of Structural Stability and Dynamics 16(3):1450,111/1–29Google Scholar
  30. Kocsis A, Challamel N, Károlyi G (2017) Discrete and nonlocal models of Engesser and Haringx elastica. International Journal of Mechanical Sciences 130:571–585Google Scholar
  31. Koiter WT (1963) Elastic stability and post-buckling. In: Langer RE (ed) Proc. Symp. Nonlinear Problems, University of Wisconsin PressGoogle Scholar
  32. Koiter WT (2009) Elastic stability of solids and structures (Ed. van der Heijden AMA). Cambridge University Press, CambridgeGoogle Scholar
  33. Kröner E, Datta B (1966) Nichtlokale elastostatik: Ableitung aus der gittertheorie. Z Phys 196:203–211Google Scholar
  34. Krumhansl J (1965) Generalized continuum field representations for lattice vibrations. In: Wallis R (ed) Lattice Dynamics, Proceedings of the International Conference held at Copenhagen, Denmark 5-9 August 1963, Pergamon Press, OxfordGoogle Scholar
  35. Kunin I (1966) Model of elastic medium with simple structure and space dispersion. Prikl Mat Mekh 30:542–550, In RussianGoogle Scholar
  36. Love AEH (1944) A treatise on the mathematical theory of elasticity, 4th edn. Dover Publications, New YorkGoogle Scholar
  37. Magnusson A, Ristinmaa M, Ljung C (2001) Behaviour of the extensible elastica solution. International Journal of Solids and Structures 38:8441–8457Google Scholar
  38. Maugin GA (1999) Nonlinear waves in elastic crystals. Oxford University PressGoogle Scholar
  39. Navier L (1823) Sur les lois de l’équilibre et du mouvement des corps solides élastiques. Bulletin des sciences par la Société Philomatique de Paris pp 177–181Google Scholar
  40. Pflüger A (1964) Stabililätsprobleme der Elastostatik. Springer–Verlag, Berlin HeidelbergGoogle Scholar
  41. Reissner E (1982) Some remarks on the problem of Euler buckling. Ingenieur–Archiv 52:115–119Google Scholar
  42. Rózsa P (1991) Linear Algebra and its Applications (in Hungarian). Tankönyvkiadó, BudapestGoogle Scholar
  43. Silverman IK (1951) Discussion on the paper of “Salvadori M.G., Numerical computation of buckling loads by finite differences”. Trans ASCE 116:625–626Google Scholar
  44. Stakgold I (1950) The cauchy relations in a molecular theory of elasticity. Quart Appl Math 8:169–186Google Scholar
  45. Timoshenko SP (1922) On the transverse vibration of bars with uniform cross-section. Philosophical Magazine 43:125–131Google Scholar
  46. Timoshenko SP (1953) History of strength of materials with a brief account of the history of theory of elasticity and theory of structures. McGraw-HillGoogle Scholar
  47. Turco E, Dell’Isola F, Cazzani A, Rizzi L (2016) Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z Angew Math Phys 67(85):1–28Google Scholar
  48. Wang CT (1951) Discussion on the paper of “Salvadori M.G., Numerical computation of buckling loads by finite differences”. Trans ASCE 116:629–631Google Scholar
  49. Wang CT (1953) Applied Elasticity. McGraw-Hill, New YorkGoogle Scholar
  50. Zhang Z, Challamel N, Wang CM (2013) Eringen’s small length scale coefficient for buckling of nonlocal Timoshenko beam based on microstructured beam model. Journal of Applied Physics 114:114,902/1–6Google Scholar
  51. Ziegler H (1982) Arguments for and against Engesser’s buckling formulas. Ingenieur–Archiv 52:105–113Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Structural MechanicsBudapest University of Technology and Economics and Engineering Center BudapestBudapestHungary
  2. 2.EA 4250, Institut de Recherche Dupuy de Lôme (IRDL), Centre de RechercheUniversité de Bretagne SudLorientFrance

Personalised recommendations