Advertisement

Generalized Debye Series Theory for Acoustic Scattering: Some Applications

  • Alain Gérard
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 89)

Abstract

The problem of propagation of acoustic waves in the presence of a submerged elastic object of cylindrical or spherical shape is formulated here in a unified fashion. With this general formalism is associated a synthetic procedure of resolution of the continuity conditions for the fields at the interfaces. This procedure, based on the operator concept, leads in a simple and direct fashion to the generalized Debye series for the exact solution of wave propagation in the case of separable geometries with the acoustic source either inside or ouside to the scatterer. For cylindrical and spherical geometries, this result, which we term the "Generalized Debye Series Theory" (GDST), is exploited for various applications and appears as a complementary contribution to the Resonance Scattering Theory (RST) as established by H. Überall et al.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brill D, Überall H (1970) Transmitted waves in the diffraction of sound from liquid cylinders. J Acoust Soc Am 47:1467–1469Google Scholar
  2. Brill D, Überall H (1971) Acoustic waves transmitted through solid elastic cylinders. J AcoustSoc Am 50:921–939Google Scholar
  3. Conoir JM (1988) Diffusion acoustique par un cylindre. Théorie modale et approximation de l’acoustique géométrique. PhD thesis, University Pierre et Marie Curie, Paris 6Google Scholar
  4. Conoir JM (1991) Interférences périodicités sur les résonances dans une plaque élastique. J Acoust 4:377–412Google Scholar
  5. Conoir JM, Gérard A (1989) Un nouveau fond potentiel pour la matrice S. J Acoust 2:217–227Google Scholar
  6. Conoir JM, Gérard A, Derem A (1991) Ondes acoustiques transmises et séries de Debye généralisées. I Traitement des l’interfaces planes. J Acoust 4:159–200Google Scholar
  7. Danthez JM (1988) Réponse spatio-temporelle d’un guide cylindrique solide à un faisceau ultrasonore. Application à la mesure des tensions résiduelles de serrage dans les assemblages boulonnés. PhD thesis, University Bordeaux 1Google Scholar
  8. Danthez JM, Deschamps M, Gérard A (1989a) Réponse spatio-temporelle d’un guide cylindrique solide à un faisceau borné. I. Partie théorique. J Acoust 2:119–125Google Scholar
  9. Danthez JM, Deschamps M, Roux J (1989b) Réponse spatio-temporelle d’un guide cylindrique solide à un faisceau borné. II. Partie expérimentale. J Acoust 2:127–136Google Scholar
  10. Debye P (1908) Das elektromagnetische Feld um einen Zylinder und die Theorie des Regenbogens. Physik Z 9:775–778Google Scholar
  11. Derem A (1982) Série des ondes transmises pour un cylindre fluide et creux: une solution exacte. Revue du CETHEDEC 73:1–27Google Scholar
  12. Deschamps M, Hosten B (1992) The effects of viscoelasticity on the reflection and transmission of ultrasonic waves by an orthotropic plate. J AcoustSoc Am 91:2007–2015Google Scholar
  13. Dickey JW, Nixon DA, d’Archangelo JM (1983) Acoustic high frequency by elastic cylindrical shells. J Acoust Soc Amer 74:297–304Google Scholar
  14. Fiorito R, Madigosky W, Überall H (1979) Resonance theory of acoustic waves interacting with an elastic plate. J Acoust Soc Am 66:1857–1866Google Scholar
  15. Flax L, Dragonette LR, Überall H (1978) Theory of elastic resonance excitation by sound scattering. J Acoust Soc Am 63:723–761Google Scholar
  16. Gérard A (1979) Champ résultant de l’incidence d’ondes P ou SV sur une sphère élastique. C R Acad Sci Paris 289:237–240Google Scholar
  17. Gérard A (1980) Champ résultant de l’incidence d’ondes P et SV sur un milieu stratifié à symétrie sphérique. C R Acad Sci Paris 290:43–46Google Scholar
  18. Gérard A (1983) Factorisation de l’équation caractéristique d’une sphère élastique multi-couches: interprétation des résonances. C R Acad Sci Paris 297:17–19Google Scholar
  19. Gérard A (1987) Formalisme modal: interprétation. In: Gespa N, Poirée B (eds) La Diffusion Acoustique, Revue du CEDOCAR, Paris, pp 165–287Google Scholar
  20. Gérard A, Conoir JM (1989) S matrix theory: a new intermediate background. In: 13th Int. Cong. of Acoust., Jugoslavia, pp 231–233Google Scholar
  21. Gérard A, Rousselot JL (1983) Solution exacte de diffusion d’une sphère pleine: interprétation et résonances. In: 11th Int. Cong. on Acoustics, ParisGoogle Scholar
  22. Gérard A, Rousselot JL (1984) Diffusion à basse fréquence d’une coque sphérique immergée. Revue du CETHEDEC 78:121–133Google Scholar
  23. Gérard A, Rousselot JL, Izbicki JL, Maze G, Ripoche J (1988) Résonance des ondes d’interface coques cylindriques minces immergées : détermination et interprétation. Rev Phys Appl 23:289–299Google Scholar
  24. Grosse-Tête A, Gérard A, Rousselot JL (1985) Influence d’un milieu élastique dissipatif sur la diffusion acoustique d’objets cylindriques. Traitement du signal 2:397–400Google Scholar
  25. Izbicki JL, Rousselot JL, Gérard A, Maze G, Ripoche J (1991) Analysis of resonances related to scholte-stoneley waves around circular cylindrical shells. J Acoust Soc Am 90(5):2602–2608Google Scholar
  26. Knopoff L (1959) Scattering of compression waves by spherical obstacles. Geophys 24:30–39Google Scholar
  27. Likhodaeva EA, Shenderov EL (1971) Circumferential waves produced by plane wave diffraction at a cylindrical shell. Sov Phys Acoust 17:63–81Google Scholar
  28. Maze G, Ripoche J (1983) Méthode d’isolement et d’identification de résonances de cylindres et de tubes soumis à une onde acoustique plane dans l’eau. Rev Phys Appl 28:319–326Google Scholar
  29. Maze G, Traconet B, Ripoche J (1981) Influence des ondes de Galerie à écho sur la diffusion d’une onde ultrasonore plane par un cylindre. Phys Lett 84A:309–312Google Scholar
  30. Maze G, Ripoche J, Derem A, Rousselot JL (1984) Diffusion d’une onde ultrasonore par des tubes remplis d’air, immergés dans l’eau. Acustica 55:69–85Google Scholar
  31. Morse PM, Feshbach H (1953) Methods of Theoretical Physics, vol 1. McGraw-Hill, New-YorkGoogle Scholar
  32. Murphy JD, George J, Nagl A, Überall H (1979a) Isolation of resonant component in acoustic scattering from fluid loaded elastic spherical shells. J Acoust Soc Am 65:368–373Google Scholar
  33. Murphy JD, George J, Überall H (1979b) Isolation of resonant component in acoustic scattering from fluid loaded cylindrical shells. Wave Motion 1:141–147Google Scholar
  34. Nagase M (1956) Diffraction of elastic waves by a spherical surface. J Phys Soc Japan 11:279–301Google Scholar
  35. Nussenzweig HM (1969a) High-frequency scattering by a transparent sphere. I. Direct reflection and transmission. J Math Phys 10:82–124Google Scholar
  36. Nussenzweig HM (1969b) High-frequency scattering by a transparent sphere. II. Theory of the rainbow and glory. J Math Phys 10:125–176Google Scholar
  37. Pao YH, Mow CC (1973) Diffraction of elastic waves and dynamic stress concentrations. Crane, Russak and Co, New-YorkGoogle Scholar
  38. Rousselot JL, Gérard A, Sessarego JP, Sageloli J (1988) Réponse basse fréquence d’une coque sphérique mince immergée. Acustica 66:203–213Google Scholar
  39. Scholte JGJ (1956) On seismic waves in a spherical earth. In: Koninklijk Nederlands Meteorologisch Instituut, Medelingen en Verhandelingen, vol 65Google Scholar
  40. Schuetz LS, Neubauer WG (1977) Acoustic reflexion from cylinders non absorbing and absorbing. J Acoust Soc Am 62:513–517Google Scholar
  41. Sessarego JP, Sageloli J, Gazanhes C (1987) Diffusion acoustique par des sphères élastique. Acustica 64:206–210Google Scholar
  42. Sezawa K (1927) Scattering of elastic waves and some allied problems. Bull Earthquake Res Inst 3:19–42Google Scholar
  43. van-der-Pol B, Bremmer H (1937) The diffraction of electromagnetic waves from an electrical point source round a finitely conducting sphere, with applications to radiotelegraphy and the theory of the rainbow. Phil Mag 24:141–176Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.I2M-MPI, CNRS, UMR5295Bordeaux University,PessacFrance

Personalised recommendations