Skip to main content

Depiction of Multivariate Data Through Flow Maps

  • Chapter
  • First Online:
Service-Oriented Mapping

Abstract

Flow maps are graphical representations that depict the movement of a geospatial phenomenon, e.g. migration and trade flows, from one location to another. These maps depict univariate spatial origin-destination datasets, with flows represented as lines and quantified by their width. One main feature of these maps is the aggregation of flows that share the same origin. Thus, visual clutter is reduced and the readability improved. This chapter describes a novel technique that extends flow maps to visualize multivariate geographical data. Instead of a univariate color scheme, we interpolate strategic color schemes to communicate multivariate quantitative information. Additionally, our approach crystallizes on augmenting flows with pie charts. To evaluate the relevance and impact of our approach, three case studies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews DF (1972) Plots of high-dimensional data. Biometrics, 125–136

    Article  Google Scholar 

  • Andrienko G, Andrienko N (2001) Constructing parallel coordinates plot for problem solving. In: 1st international symposium on smart graphics, pp 9–14

    Google Scholar 

  • Bureau C (2014) Migration/geographic mobility. Retrieved from https://www.census.gov/hhes/migration/

  • Byron JR (1994) Spectral encoding of soil texture: a new visualization method. In: GIS/LIS Proceedings, Phoenix, Airz, pp 125–132

    Google Scholar 

  • Chan WWY (2006) A survey on multivariate data visualization, vol 8. Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong kong, pp 1–29

    Google Scholar 

  • Chernoff H, Rizvi MH (1975) Effect on classification error of random permutations of features in representing multivariate data by faces. J Am Stat Assoc 70:548–554

    Article  Google Scholar 

  • Cui W, Zhou H, Qu H, Wong PC, Li X (2008) Geometry-based edge clustering for graph visualization. IEEE Trans. Vis Comput Graph 14:1277–1284

    Google Scholar 

  • Debiasi A, Simões B, De Amicis R (2014a) 3DArcLens: a technique for the exploration of geographical networks. In: 2014 IEEE conference on visual analytics science and technology (VAST), pp 245–246. https://doi.org/10.1109/vast.2014.7042512

  • Debiasi A, Simões B, De Amicis R (2014b) Depiction of multivariate data through flow maps. In: Proceedings of the SOMAP—symposium on service-oriented mapping

    Google Scholar 

  • Debiasi A, Simões B, De Amicis R (2014c) Supervised force directed algorithm for the generation of flow maps. In: Proceedings of the WSCG—22nd international conference on computer graphics, pp 193–202

    Google Scholar 

  • Debiasi A, Simões B, De Amicis R (2015a) 3DArcLens: interactive network analysis on geographic surfaces. In: Proceedings of the 6th international conference on information visualization theory and applications, pp 291–299. https://doi.org/10.5220/0005255202910299

  • Debiasi A, Simões B, De Amicis R (2015b) GeoPeels: deformation-based technique for exploration of geo-referenced networks. In: Proceedings of the WSCG—23rd international conference on computer graphics, pp 53–62

    Google Scholar 

  • Debiasi A, Simoes B, Amicis RD (2015c) Schematization of node-link diagrams and drawing techniques for geo-referenced networks. In: 2015 international conference on Cyberworlds (CW), pp 34–41. https://doi.org/10.1109/cw.2015.68

  • Debiasi A, Simões B, De Amicis R (2016) Schematization of clutter reduction techniques in geographic node-link diagrams using task-based criteria. In: Proceedings of the 7th international conference on information visualization theory and applications. https://doi.org/10.5220/0005255202910299

  • Dent BD (1990) Cartography: Thematic map design. WC Brown, Dubuque, IA

    Google Scholar 

  • DiBiase D, Reeves C, MacEachren AM, Von Wyss M, Krygier JB, Sloan JL, Detweiler MA (1994) Multivariate display of geographic data: applications in earth system science. In: Visualization in modern cartography, pp 287–312

    Chapter  Google Scholar 

  • Ersoy O, Hurter C, Paulovich FV, Cantareiro G, Telea A (2011) Skeleton-based edge bundling for graph visualization. IEEE Trans Vis Comput Graph 17:2364–2373

    Article  Google Scholar 

  • Eyton JR (1984) Complementary-color, two-variable maps. Ann Assoc Am Geogr 74:477–490

    Article  Google Scholar 

  • Few S (2007) Save the pies for dessert. In: Perceptual edge visual business intelligence newsletter, pp 1–14

    Google Scholar 

  • Friendly M, Denis DJ (2008) Milestones in the history of thematic cartography, statistical graphics, and data visualization. Seeing Science: Today American Association for the Advancement of Science

    Google Scholar 

  • Gahegan M (1998) Scatterplots and scenes: visualisation techniques for exploratory spatial analysis. Comput Environ Urban Syst 22:43–56

    Article  Google Scholar 

  • Gossett N, Chen B (2004) Paint inspired color mixing and compositing for visualization. In: IEEE symposium on information visualization, 2004. INFOVIS 2004, pp 113–118

    Google Scholar 

  • Guo D (2009) Flow mapping and multivariate visualization of large spatial interaction data. IEEE Trans Vis Comput Graph 15:1041–1048

    Article  Google Scholar 

  • Harris RL (1999) Information graphics: a comprehensive illustrated reference. Oxford University Press, Oxford

    Google Scholar 

  • Holten D, Wijk VA (2009) Force-directed edge bundling for graph visualization. Comput Graph Forum 28:983–990

    Article  Google Scholar 

  • Holten D, van Wijk, Jarke J (2009) A user study on visualizing directed edges in graphs. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 2299–2308

    Google Scholar 

  • Inselberg A (1985) The plane with parallel coordinates. Vis Comput 1:69–91

    Article  Google Scholar 

  • Keim DA, Panse C, Sips M (2004) Information visualization: scope, techniques and opportunities for geovisualization. Bibliothek der Universität Konstanz

    Google Scholar 

  • Klein T, van der Zwan M, Telea A (2014) Dynamic multiscale visualization of flight data. GRAPP/VISAPP

    Google Scholar 

  • Leonowicz A (2006) Two-variable choropleth maps as a useful tool for visualization of geographical relationships. Geografija 42:33–37

    Google Scholar 

  • Mazza R (2009) Introduction. Introduction to information visualization. Springer Science & Business Media

    Google Scholar 

  • Nocaj A, Brandes U (2013) Stub bundling and confluent spirals for geographic networks. In: Graph drawing, pp 388–399

    Chapter  Google Scholar 

  • Phan D, Xiao L, Yeh R, Hanrahan P (2005) Flow map layout. In: IEEE symposium on information visualization, 2005. INFOVIS 2005, pp 219–224

    Google Scholar 

  • Pickett RM, Grinstein G, Levkowitz H, Smith S (1995) Harnessing preattentive perceptual processes in visualization. In: Perceptual issues in visualization. Springer, Berlin, pp 33–45

    Chapter  Google Scholar 

  • Pupyrev S, Nachmanson L, Bereg S, Holroyd AE (2012) Edge routing with ordered bundles. In: Graph drawing, pp 136–147

    Chapter  Google Scholar 

  • Robinson AH (1955). The 1837 maps of Henry Drury harness. Geogr J 121:440–450. Retrieved from http://www.jstor.org/stable/1791753

    Article  Google Scholar 

  • Schmidt M (2008) The Sankey diagram in energy and material flow management. J Ind Ecol 12:82–94

    Article  Google Scholar 

  • Selassie D, Heller B, Heer J (2011) Divided edge bundling for directional network data. IEEE Trans Vis Comput Graph 17:2354–2363

    Article  Google Scholar 

  • Slocum TA, McMaster RB, Kessler FC, Howard HH (2009) Thematic cartography and geovisualization. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Tominski C, Schulz HJ (2012) The great wall of space-time. In: Vision, modeling & visualization, pp 199–206

    Google Scholar 

  • Tominski C, Schulze-Wollgast P, Schumann H (2005) 3D information visualization for time dependent data on maps. In: Proceedings of the ninth international conference on information visualisation, 2005, pp 175–181

    Google Scholar 

  • Tominski C, Fuchs G, Schumann H (2008) Task-driven color coding. In: 12th international conference on information visualisation, 2008. IV’08, pp 373–380

    Google Scholar 

  • Tufte ER, Graves-Morris PR (1983) The visual display of quantitative information, vol 2. Graphics press, Cheshire, CT

    Google Scholar 

  • Vanderbei RJ (n.d.) On graphical representations of voting results. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.7759. Website accessed on 15 Feb 2018

  • Verbeek K, Buchin K, Speckmann B (2011) Flow map layout via spiral trees. IEEE Trans Visual Comput Graphics 17:2536–2544

    Article  Google Scholar 

  • Wittenbrink CM, Saxon E, Furman JJ, Pang A, Lodha SK (1995) Glyphs for visualizing uncertainty in environmental vector fields. In: IS\&T/SPIE’s symposium on electronic imaging: science & technology, pp 87–100

    Google Scholar 

  • Zhou H, Xu P, Yuan X, Qu H (2013) Edge bundling in information visualization. Tsinghua Sci Technol 18:145–156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Debiasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debiasi, A., Simões, B., De Amicis, R. (2019). Depiction of Multivariate Data Through Flow Maps. In: Döllner, J., Jobst, M., Schmitz, P. (eds) Service-Oriented Mapping. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-72434-8_6

Download citation

Publish with us

Policies and ethics