Skip to main content

Oriented-Attachment Nanocrystals in Solar Cells

  • Chapter
  • First Online:
Nanocrystals from Oriented-Attachment for Energy Applications

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 470 Accesses

Abstract

Solar cells convert solar energy into electricity directly. The first-generation solar cells, which are silicon-based photovoltaic devices are efficient but costly. Although second-generation solar cells are cost-effective, the conversion efficiency is not desirable. Now, people are focusing on the third-generation solar cells with low cost, highly efficiency, and non-toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008)

    Google Scholar 

  2. B. O’regan, M. Grfitzeli, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Google Scholar 

  3. K. Wang, F. Jia, L. Zhang, Facile construction of low-cost flexible solar cells with p-type BiOI nanoflake arrays fabricated via oriented attachment. Mater. Lett. 92, 354–357 (2013)

    Google Scholar 

  4. M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127, 16835–16847 (2005)

    Google Scholar 

  5. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Google Scholar 

  6. N. Tétreault, M. Grätzel, Novel nanostructures for next generation dye-sensitized solar cells. Energy Environ. Sci. 5, 8506 (2012)

    Google Scholar 

  7. N. Tétreault, E. Horváth, T. Moehl, J.R.M. Brillet, R. Smajda, S. Bungener, N. Cai, P. Wang, S.M. Zakeeruddin, L.S. Forró, High-efficiency solid-state dye-sensitized solar cells: fast charge extraction through self-assembled 3D fibrous network of crystalline TiO2 nanowires. ACS Nano 4, 7644–7650 (2010)

    Google Scholar 

  8. Y. Shi, C. Zhu, L. Wang, C. Zhao, W. Li, K.K. Fung, T. Ma, A. Hagfeldt, N. Wang, Ultrarapid sonochemical synthesis of ZnO hierarchical structures: from fundamental research to high efficiencies up to 6.42% for quasi-solid dye-sensitized solar cells. Chem. Mater. 25, 1000–1012 (2013)

    Google Scholar 

  9. J. Navas, E. Guillén, R. Alcántara, C. Fernández-Lorenzo, J. Martín-Calleja, G. Oskam, J. Idígoras, T. Berger, J. Anta, Direct estimation of the electron diffusion length in dye-sensitized solar cells. J. Phys. Chem. Lett. 2, 1045–1050 (2011)

    Google Scholar 

  10. M.A. Henderson, A surface science perspective on photocatalysis. Surf. Sci. Rep. 66, 185–297 (2011)

    Google Scholar 

  11. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    Google Scholar 

  12. S.H. Kang, S.H. Choi, M.S. Kang, J.Y. Kim, H.S. Kim, T. Hyeon, Y.E. Sung, Nanorod‐based dye‐sensitized solar cells with improved charge collection efficiency. Adv. Mater. 20, 54–58 (2008)

    Google Scholar 

  13. C.J. Dalmaschio, C. Ribeiro, E.R. Leite, Impact of the colloidal state on the oriented attachment growth mechanism. Nanoscale 2, 2336–2345 (2010)

    Google Scholar 

  14. D. D. Qin, Y. P. Bi, X. J. Feng, W. Wang, G. D. Barber, T. Wang, Y. M. Song, X. Q. Lu, T.E. Mallouk, Hydrothermal growth and photoelectrochemistry of highly oriented, crystalline anatase TiO2 nanorods on transparent conducting electrodes. Chem. Mater. 27, 4180–4183 (2015)

    Google Scholar 

  15. W. Zhang, X. Zeng, H. Wang, R. Fang, Y. Xu, Y. Zhang, W. Chen, High-yield synthesis of “oriented attachment” TiO2 nanorods as superior building blocks of photoanodes in quantum dot sensitized solar cells. RSC Adv. 6, 33713–33722 (2016)

    Google Scholar 

  16. P.L. Kuo, C.H. Liao, A seeding method to synthesize aggregate scattering titanium oxide by oriented attachment network titanium oxide as a seed for dye-sensitized solar cells. J. Power Sources 275, 720–726 (2015)

    Google Scholar 

  17. S. Yang, Y.C. Zheng, Y. Hou, H.G. Yang, Controlled oriented attachment of bipyramidal‐shaped anatase TiO2 and their enhanced performance in dye‐sensitized solar cells. ChemPlusChem 80, 805–809 (2015)

    Google Scholar 

  18. P.L. Kuo, C.H. Liao, A seeding method to change primary particle of oriented attachment network titanium dioxide for dye-sensitized solar cells. J. Power Sources 267, 98–103 (2014)

    Google Scholar 

  19. W. Zhang, Y. Xie, D. Xiong, X. Zeng, Z. Li, M. Wang, Y. B. Cheng, W. Chen, K. Yan, S. Yang, TiO2 Nanorods: a facile size- and shape-tunable synthesis and effective improvement of charge collection kinetics for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 6, 9698–9704 (2014)

    Google Scholar 

  20. C. Chen, J. Wang, Z. Ren, G. Qian, Z. Wang, One-dimension TiO2 nanostructures: oriented attachment and application in dye-sensitized solar cell. CrystEngComm 16, 1681–1686 (2014)

    Google Scholar 

  21. X. Sheng, D. He, J. Yang, K. Zhu, X. Feng, Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties. Nano Lett. 14, 1848–1852 (2014)

    Google Scholar 

  22. J. Shi, Y. Liu, Q. Peng, Y. Li, ZnO hierarchical aggregates: Solvothermal synthesis and application in dye-sensitized solar cells. Nano Research 6, 441–448 (2013)

    Google Scholar 

  23. S. Zhu, X. Tian, J. Chen, L. Shan, X. Xu, Z. Zhou,  A facile approach to construct multiple structured ZnO crystals by trisodium citrate-assisted hydrothermal growth toward performance enhancement of dye-sensitized solar cells. J. Phys. Chem. C 118, 16401–16407 (2013)

    Google Scholar 

  24. S. Zhu, L. Shan, X. Chen, L. He, J. Chen, M. Jiang, X. Xie, Z. Zhou, Hierarchical ZnO architectures consisting of nanorods and nanosheets prepared via a solution route for photovoltaic enhancement in dye-sensitized solar cells. RSC Adv. 3, 2910 (2013)

    Google Scholar 

  25. H. Song, K.H. Lee, H. Jeong, S.H. Um, G.S. Han, H.S. Jung, G.Y. Jung, A simple self-assembly route to single crystalline SnO2 nanorod growth by oriented attachment for dye sensitized solar cells. Nanoscale 5, 1188–1194 (2013)

    Google Scholar 

  26. Y. Rui, Y. Li, H. Wang, Q. Zhang, Photoanode based on chain‐shaped anatase TiO2 nanorods for high‐efficiency dye‐sensitized solar cells. Chem. Asian J. 7, 2313–2320 (2012)

    Google Scholar 

  27. C. R. Ke, J. M. Ting, Anatase TiO2 beads having ultra-fast electron diffusion rates for use in low temperature flexible dye-sensitized solar cells. J. Power Sources 208, 316–321 (2012)

    Google Scholar 

  28. W. Yang, Y. Wang, W. Shi, One-step synthesis of single-crystal anatase TiO2 tetragonal faceted-nanorods for improved-performance dye-sensitized solar cells. CrystEngComm 14, 230–234 (2012)

    Google Scholar 

  29. Q. Zhang, S. Li, Y. Li, H. Wang, Preparation of nanorod-like anatase TiO2 nanocrystals and their photovoltaic properties. J. Nanosci. Nanotechnol. 11, 11109–11113 (2011)

    Google Scholar 

  30. J. Y. Liao, B. X. Lei, D. B. Kuang, C. Y. Su, Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells. Energy Environ. Sci. 4, 4079 (2011)

    Google Scholar 

  31. Y. Hao, G. Shi, D. Qian, Q. Zhang, High efficiency dye-sensitized solar cells based on the anatase TiO2 sols. J. Chin. Ceram. Soc. 39, 1090–1096 (2011)

    Google Scholar 

  32. Y. Wang, W. Yang, W. Shi, Preparation and characterization of anatase TiO2 nanosheets-based microspheres for dye-sensitized solar cells. Ind. Eng. Chem. Res. 50, 11982–1 1987(2011)

    Google Scholar 

  33. W. Yang, J. Li, Y. Wang, F. Zhu, W. Shi, F. Wan, D. Xu, A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chem Commun. 47, 1809–1811 (2011)

    Google Scholar 

  34. W.G. Yang, F.R. Wan, Q.W. Chen, J.J. Li, D.S. Xu, Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells. J. Mater. Chem. 20, 2870 (2010)

    Google Scholar 

  35. N. Tétreault, E. Horváth, T. Moehl, J. Brillet, R. Smajda, S. Bungener, N. Cai, P. Wang, S.M. Zakeeruddin, L. Forró, A. Magrez, M. Grätzel, High-efficiency solid-state dye-sensitized solar cells: fast charge extraction through self-assembled 3D fibrous network of crystalline TiO2 nanowires. ACS Nano 4, 7644–7650 (2010)

    Google Scholar 

  36. W. Shao, F. Gu, C. Li, M. Lu, Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency. Inorg. Chem. 49, 5453–5459 (2010)

    Google Scholar 

  37. C.X. He, B.X. Lei, Y.F. Wang, C.Y. Su, Y.P. Fang, D.B. Kuang, Sonochemical preparation of hierarchical ZnO hollow spheres for efficient dye‐sensitized solar cells. Chem. A. European Journal 16, 8757–8761 (2010)

    Google Scholar 

  38. Y.F. Wang, J.W. Li, Y.F. Hou, X.Y. Yu, C.Y. Su, D.B. Kuang, Hierarchical tin oxide octahedra for highly efficient dye‐sensitized solar cells. Chem. Eur. J. 16, 8620–8625 (2010)

    Google Scholar 

  39. Y. Qiu, W. Chen, S. Yang, Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnO nanoplates and their application in dye-sensitized solar cells. J. Mater. Chem. 20, 1001–1006 (2009)

    Google Scholar 

  40. Z.L.S. Seow, A.S.W. Wong, V. Thavasi, R. Jose, S. Ramakrishna, G.W. Ho, Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells. Nanotechnology 20, 045604 (2009)

    Google Scholar 

  41. M. Adachi, J. Jiu, S. Isoda, Y. Mori, F. Uchida, Self-assembled nanoscale architecture of TiO2 and application for dye-sensitized solar cells. Nanotechnol. Sci. Appl. 1, 1–7 (2008)

    Google Scholar 

  42. S.H. Kang, M.S. Kang, S.H. Choi, J.Y. Kim, H.S. Kim, T. Hyeon, Y.E. Sung, Improved charge transport in dye-sensitized solar cells employing viscous non-volatile electrolytes. Electrochem. Commun. 10, 1326–1329 (2008)

    Google Scholar 

  43. A. Elkhidir Suliman, Y. Tang, L. Xu, Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91, 1658–1662 (2007)

    Google Scholar 

  44. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang, Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J. Am. Chem. Soc. 126, 14943–14949 (2004)

    Google Scholar 

  45. R. Jose, V. Thavasi, S. Ramakrishna, Metal oxides for dye‐sensitized solar cells. J. Am. Ceram. Soc. 92, 289–301 (2009)

    Google Scholar 

  46. M. Hosni, Y. Kusumawati, S. Farhat, N. Jouini, T. Pauporté, Effects of oxide nanoparticle size and shape on electronic structure, charge transport, and recombination in dye-sensitized solar cell photoelectrodes. J. Phys. Chem. C 118, 16791–16798 (2014)

    Google Scholar 

  47. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim. Acta 47, 4213–4225 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong He .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, W., Wen, K., Niu, Y. (2018). Oriented-Attachment Nanocrystals in Solar Cells. In: Nanocrystals from Oriented-Attachment for Energy Applications. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-72432-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72432-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72430-0

  • Online ISBN: 978-3-319-72432-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics