Skip to main content

Oriented-Attachment Nanocrystals in Fuel Cells

  • Chapter
  • First Online:
Nanocrystals from Oriented-Attachment for Energy Applications

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 480 Accesses

Abstract

Fuel cells are devices that convert chemical energy to electricity through reaction of fuels with oxygen. Different from batteries that are defined as storage energy devices, fuel cells can continuously generate electricity as long as fuels are supplied sufficiently [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. O’hayre, S.-W. Cha, F.B. Prinz, W. Colella,  Fuel cell fundamentals (Wiley, New York, 2016)

    Google Scholar 

  2. A.J. Appleby, Regenerative fuel cells for space applications. J. Power Sources 22, 377–385 (1988)

    Google Scholar 

  3. W.R. Grove, On voltaic series and the combination of gases by platinum. Lond. Edinb. Philos. Mag. J. Sci. 14, 127–130 (1839)

    Google Scholar 

  4. W.R. Grove, On a Gaseous Voltaic Battery. Philos. Mag. Series 3, 21, 417–420 (1842)

    Google Scholar 

  5. R.E. Billings, The hydrogen world view. (International Academy of Science, 1991)

    Google Scholar 

  6. L.J. Blomen, M.N. Mugerwa,  Fuel cell systems. (Springer Science & Business Media, 2013)

    Google Scholar 

  7. R.R. Prabhu, Stationary Fuel Cells Market size to reach 350,000 Shipments by 2022. (Renew India Campaign, 2013)

    Google Scholar 

  8. S. Basu, J.A. Roberts, S.N. Azam-Ali, S. Mayes, Bambara groundnut[M]// Pulses, Sugar and Tuber Crops, (Springer, Berlin, Heidelberg, 2007), pp. 159-173

    Google Scholar 

  9. Basu R N. Materials for solid oxide fuel cells[M]//Recent trends in fuel cell science and technology. (Springer New York, 2007), pp. 286-331

    Google Scholar 

  10. J.H. Wee, Applications of proton exchange membrane fuel cell systems. Renew. Sustain. Energy Rev. 11, 1720–1738 (2007)

    Google Scholar 

  11. Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011)

    Google Scholar 

  12. G.F. McLean, T. Niet, S. Prince-Richard, N. Djilali, An assessment of alkaline fuel cell technology. Int. J. Hydrogen Energy 27, 507–526 (2002)

    Google Scholar 

  13. G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 377, 1–35 (2011)

    Google Scholar 

  14. X. Ren, P. Zelenay, S. Thomas, J. Davey, S. Gottesfeld, Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. J. Power Sources 86, 111–116 (2000)

    Google Scholar 

  15. V. Das, S. Padmanaban, K. Venkitusamy, R. Selvamuthukumaran, F. Blaabjerg, P. Siano, Recent advances and challenges of fuel cell based power system architectures and control–A review. Renew. Sustain. Energy Rev. 73, 10–18 (2017)

    Google Scholar 

  16. Bagotsky V. S. Fuel cells: problems and solutions. (John Wiley & Sons, 2012)

    Google Scholar 

  17. C.G. Lee, Molten Carbonate Fuel Cells, in Fuel Cells: Selected Entries from the Encyclopedia of Sustainability Science and Technology, ed. by K.D. Kreuer (Springer, New York, New York, NY, 2013), pp. 217–248

    Google Scholar 

  18. A.L. Dicks, Molten carbonate fuel cells. Curr. Opin. Solid State Mater. Sci. 8, 379–383 (2004)

    Google Scholar 

  19. O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects. Electrochim. Acta 45, 2423–2435 (2000)

    Google Scholar 

  20. E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011)

    Google Scholar 

  21. S. Sharma, B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts—a review. J. Power Sources 208, 96–119 (2012)

    Google Scholar 

  22. R.F. Mann, J.C. Amphlett, M.A.I. Hooper, H.M. Jensen, B.A. Peppley, P.R. Roberge, Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. J. Power Sources 86, 173–180 (2000)

    Google Scholar 

  23. S.S. Munjewar, S.B. Thombre, R.K. Mallick, Approaches to overcome the barrier issues of passive direct methanol fuel cell–Review. Renew. Sustain. Energy Rev. 67, 1087–1104 (2017)

    Google Scholar 

  24. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005)

    Google Scholar 

  25. X. Zhou, Y. Gan, J. Du, D. Tian, R. Zhang, C. Yang, Z. Dai, A review of hollow Pt-based nanocatalysts applied in proton exchange membrane fuel cells. J. Power Sources 232, 310–322 (2013)

    Google Scholar 

  26. C. Bianchini, P.K. Shen, Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 109, 4183–4206 (2009)

    Google Scholar 

  27. C. Wang, H. Daimon, T. Onodera, T. Koda, S. Sun, A General Approach to the Size‐and Shape‐Controlled Synthesis of Platinum Nanoparticles and Their Catalytic Reduction of Oxygen. Angew. Chem. Int. Ed. 47, 3588–3591 (2008)

    Google Scholar 

  28. Y.B. He, G.R. Li, Z.L. Wang, Y.N. Ou, Y.X. Tong, Pt nanorods aggregates with enhanced electrocatalytic activity toward methanol oxidation. J. Phys. Chem. C 114, 19175–19181 (2010)

    Google Scholar 

  29. S. Sun, F. Jaouen, J.P. Dodelet, Controlled growth of Pt nanowires on carbon nanospheres and their enhanced performance as electrocatalysts in PEM fuel cells. Adv. Mater. 20, 3900–3904 (2008)

    Google Scholar 

  30. B.Y. Xia, H.B. Wu, Y. Yan, X.W. Lou, X. Wang, Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 135, 9480–9485 (2013)

    Google Scholar 

  31. C. Wang, H. Daimon, Y. Lee, J. Kim, S. Sun, Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 129, 6974–6975 (2007)

    Google Scholar 

  32. J.W. Hong, S.W. Kang, B.S. Choi, D. Kim, S.B. Lee, S.W. Han, Controlled synthesis of Pd–Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 6, 2410–2419 (2012)

    Google Scholar 

  33. S. Lu, K. Eid, D. Ge, J. Guo, L. Wang, H. Wang, H. Gu, One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 9, 1033–1039 (2017)

    Google Scholar 

  34. Y. Yu, W. Yang, X. Sun, W. Zhu, X.Z. Li, D.J. Sellmyer, S. Sun, Monodisperse MPt (M= Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts. Nano Lett. 14, 2778–2782 (2014)

    Google Scholar 

  35. V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007)

    Google Scholar 

  36. T. Maiyalagan, K. Scott, Performance of carbon nanofiber supported Pd–Ni catalysts for electro-oxidation of ethanol in alkaline medium. J. Power Sources 195, 5246–5251 (2010)

    Google Scholar 

  37. Z.Y. Shih, C.W. Wang, G. Xu, H.T. Chang, Porous palladium copper nanoparticles for the electrocatalytic oxidation of methanol in direct methanol fuel cells. J. Mater. Chem. A 1, 4773 (2013)

    Google Scholar 

  38. X. Yu, D. Wang, Q. Peng, Y. Li, Pt-M (M= Cu, Co, Ni, Fe) nanocrystals: from small nanoparticles to wormlike nanowires by oriented attachment. Chemistry 19, 233–239 (2013)

    Google Scholar 

  39. N.V. Long, M. Ohtaki, M. Uchida, R. Jalem, H. Hirata, N.D. Chien, M. Nogami, Synthesis and characterization of polyhedral Pt nanoparticles: Their catalytic property, surface attachment, self-aggregation and assembly. J. Colloid Interface Sci. 359, 339–350 (2011)

    Google Scholar 

  40. H.G. Liao, L. Cui, S. Whitelam, H. Zheng, Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012)

    Google Scholar 

  41. L. Huang, Y. Han, X. Zhang, Y. Fang, S. Dong, One-step synthesis of ultrathin PtxPb nerve-like nanowires as robust catalysts for enhanced methanol electrooxidation. Nanoscale 9, 201–207 (2017)

    Google Scholar 

  42. S. Lu, K. Eid, M. Lin, L. Wang, H. Wang, H. Gu, Hydrogen gas-assisted synthesis of worm-like PtMo wavy nanowires as efficient catalysts for the methanol oxidation reaction. J. Mater. Chem. A 4, 10508–10513 (2016)

    Google Scholar 

  43. Z. Peng, H. You, H. Yang, Composition-dependent formation of platinum silver nanowires. ACS Nano 4, 1501–1510 (2010)

    Google Scholar 

  44. L. Dong, L. Li, X. Yu, P. Lü, J. Zhao, Synthesis and electrocatalytic properties of Pt–Cu worm-like nanowires. Catal. Lett. 147, 2127–2133 (2017)

    Google Scholar 

  45. L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, Y. Song, One-step synthesis of Au–Pd alloy nanodendrites and their catalytic activity. J. Phys. Chem. C 117, 12526–12536 (2013)

    Google Scholar 

  46. L. Yang, C. Hu, J. Wang, Z. Yang, Y. Guo, Z. Bai, K. Wang, Facile synthesis of hollow palladium/copper alloyed nanocubes for formic acid oxidation. Chem. Commun. 47, 8581–8583 (2011)

    Google Scholar 

  47. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010)

    Google Scholar 

  48. L. Grabow, Y. Xu, M. Mavrikakis, Lattice strain effects on CO oxidation on Pt (111). Phys. Chem. Chem. Phys. 8, 3369–3374 (2006)

    Google Scholar 

  49. L. Gan, R. Yu, J. Luo, Z. Cheng, J. Zhu, Lattice strain distributions in individual dealloyed Pt–Fe catalyst nanoparticles. J. Phys. Chem. Lett. 3, 934–938 (2012)

    Google Scholar 

  50. Y. Suo, L. Zhuang, J. Lu, First‐principles considerations in the design of Pd‐Alloy catalysts for oxygen reduction. Angew. Chem. Int. Edit. 46, 2862–2864 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong He .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, W., Wen, K., Niu, Y. (2018). Oriented-Attachment Nanocrystals in Fuel Cells. In: Nanocrystals from Oriented-Attachment for Energy Applications. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-72432-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72432-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72430-0

  • Online ISBN: 978-3-319-72432-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics