Skip to main content

Likelihood-Free Algorithms

  • Chapter
  • First Online:
Book cover Likelihood-Free Methods for Cognitive Science

Abstract

In this chapter, we will present several algorithms, which differ in how they approximate the likelihood function and generate proposals for the posterior distribution, for performing likelihood-free inference. Four classes of algorithms—rejection-based, kernel-based, general methods, and hierarchical—will be discussed in great detail. We will provide a brief overview of the origins of each class as well as discussing the advantages and disadvantages of each. Finally, we will close the discussion by offering guidance on how to choose the appropriate class of algorithms for use in a given situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notation Model(θ) describes the distribution of a random variable X, whereas the notation Model(y|θ) denotes the probability density at the location y, conditional on the parameters θ, as in Eq. (1.2).

  2. 2.

    For the curious reader, the file GibbsABC.R contains code to sample from the posterior using traditional Gibbs sampling, as well as the Gibbs ABC algorithm so that accuracy of the algorithm can be assessed. Within this code, the parameters of the conditional distribution are specified.

References

  1. J.N. Rouder, J. Lu, Psychon. Bull. Rev. 12, 573 (2005)

    Google Scholar 

  2. J.N. Rouder, D. Sun, P. Speckman, J. Lu, D. Zhou, Psychometrika 68, 589 (2003)

    Google Scholar 

  3. J.K. Pritchard, M.T. Seielstad, A. Perez-Lezaun, M.W. Feldman, Mol. Biol. Evol. 16, 1791 (1999)

    Google Scholar 

  4. M.A. Beaumont, Annu. Rev. Ecol. Evol. Syst. 41, 379 (2010)

    Google Scholar 

  5. M.G.B. Blum, O. François, Stat. Comput. 20, 63 (2010)

    Google Scholar 

  6. B.M. Turner, P.B. Sederberg, Psychon. Bull. Rev. 21, 227 (2014)

    Google Scholar 

  7. B.W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman & Hall, London, 1986)

    Google Scholar 

  8. W.R. Holmes, J. Math. Psychol. 68, 13 (2015)

    Google Scholar 

  9. J.A. Rice, Mathematical Statistics and Data Analysis (Duxbury Press, Belmont, CA, 2007)

    Google Scholar 

  10. P. Fearnhead, D. Prangle, J. R. Stat. Soc. Ser. B 74, 419 (2012)

    Google Scholar 

  11. S. Wood, Nature 466, 1102 (2010)

    Google Scholar 

  12. B.M. Turner, T. Van Zandt, J. Math. Psychol. 56, 69 (2012)

    Google Scholar 

  13. A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian Data Analysis (Chapman and Hall, New York, NY, 2004)

    Google Scholar 

  14. C.P. Robert, G. Casella, Monte Carlo Statistical Methods (Springer, New York, NY, 2004)

    Google Scholar 

  15. S. Sisson, Y. Fan, M.M. Tanaka, Proc. Natl. Acad. Sci. USA 104, 1760 (2007)

    Google Scholar 

  16. P. Del Moral, A. Doucet, A. Jasra, J. R. Stat. Soc. B 68, 411 (2006)

    Google Scholar 

  17. T. Toni, D. Welch, N. Strelkowa, A. Ipsen, M.P. Stumpf, J. R. Soc. Interface 6, 187 (2009)

    Google Scholar 

  18. M.A. Beaumont, J.M. Cornuet, J.M. Marin, C.P. Robert, Biometrika asp052, 1 (2009)

    Google Scholar 

  19. S. Kullback, J.C. Keegel, J.H. Kullback, Topics in Statistical Information Theory. Lecture Notes in Statistics, vol. 42 (Springer, New York, 1987)

    Google Scholar 

  20. R. Douc, A. Guillin, J.M. Marin, C. Robert, Ann. Stat. 35, 420 (2007)

    Google Scholar 

  21. M.A. Beaumont, W. Zhang, D.J. Balding, Genetics 162, 2025 (2002)

    Google Scholar 

  22. N.J.R. Fagundes, N. Ray, M. Beaumont, S. Neuenschwander, F.M. Salzano, S.L. Bonatto, L. Excoffier, Proc. Natl. Acad. Sci. 104, 17614 (2007)

    Google Scholar 

  23. R.D. Wilkinson, Biometrika 96, 983 (2008)

    Google Scholar 

  24. B.M. Turner, P.B. Sederberg, J. Math. Psychol. 56, 375 (2012)

    Google Scholar 

  25. B.M. Turner, P.B. Sederberg, S. Brown, M. Steyvers, Psychol. Methods 18, 368 (2013)

    Google Scholar 

  26. B. Hu, K.W. Tsui, Technical Report Number 1112 (2005)

    Google Scholar 

  27. C.J.F. ter Braak, Stat. Comput. 16, 239 (2006)

    Google Scholar 

  28. R. Storn, K. Price, J. Glob. Optim. 11, 341 (1997)

    Google Scholar 

  29. G. Tong, Z. Fang, X. Xu, Evolutionary Computation (2006), pp. 438–442

    Google Scholar 

  30. J. Kennedy, R. Eberhart, Proc. IEEE Int. Conf. Neural Netw. 4, 1942 (1995)

    Google Scholar 

  31. R. Tanese, Distributed genetic algorithms, in Proceedings of the Third International Conference on Genetic Algorithms and Their Applications, ed. by D. Schaffer (Morgan Kaufmann, San Mateo, 1989), pp. 434–439

    Google Scholar 

  32. V.A. Epanechnikov, Theory Probab. Appl. 14, 153 (1969)

    Google Scholar 

  33. P. Kontkanen, P. Myllymäki, in Proceedings of the 11th International Conference on Artificial Intelligence and Statistics (Artificial Intelligence and Statistics, San Juan, Puerto Rico, 2007)

    Google Scholar 

  34. F. Chapeau-Blondeau, D. Rousseau, Physica A 388, 3969 (2009)

    Article  Google Scholar 

  35. L. Excoffer, A. Estoup, J.M. Cornuet, Genetics 169, 1727 (2005)

    Article  Google Scholar 

  36. B.M. Turner, T. Van Zandt, Psychometrika 79, 185 (2014)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palestro, J.J., Sederberg, P.B., Osth, A.F., Zandt, T.V., Turner, B.M. (2018). Likelihood-Free Algorithms. In: Likelihood-Free Methods for Cognitive Science. Computational Approaches to Cognition and Perception. Springer, Cham. https://doi.org/10.1007/978-3-319-72425-6_2

Download citation

Publish with us

Policies and ethics