Mechanisms of Drug Interactions II: Transport Proteins

  • Darren Michael Moss
  • Marco Siccardi
  • Catia Marzolini
Part of the Infectious Disease book series (ID)


Most pharmacokinetic studies so far have focused on the role of drug-metabolizing enzymes as the key determinants of drug disposition and their contribution to drug-drug interactions. It has now become clear that transporters are responsible for both the uptake and efflux of drugs in various tissues. Their coordinated expression and activities at the basolateral and apical side of transporting epithelia are critical in determining the extent and direction of drug movement in major organs for drug disposition such as the intestine, liver and kidney. Thus, drug transporters represent an important mechanism by which one drug may alter the pharmacokinetic and pharmacological effects (toxicity and efficacy) of another and lead to drug-drug interactions of clinical importance. This chapter focuses on the major drug transporters mediating the pharmacokinetics of anti-infective agents with special emphasis on their effect on drug disposition, their drug substrate specificities as well as their role in clinically relevant drug-drug interactions.


Drug-drug interactions Mechanisms Uptake drug transporters Efflux drug transporters Intestinal absorption Hepatobiliary elimination Renal excretion Tissue distribution Genetic polymorphisms Antiretroviral agents HCV direct-acting antivirals Prediction of drug-drug interactions Physiologically based pharmacokinetic modelling 


  1. 1.
    Hagenbuch B (2010) Drug uptake systems in liver and kidney: a historic perspective. Clin Pharmacol Ther 87:39–47PubMedGoogle Scholar
  2. 2.
    Klaassen CD, Aleksunes LM (2010) Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 62:1–96PubMedPubMedCentralGoogle Scholar
  3. 3.
    International, Transporter, and Consortium (2010) Membranes transporters in drug development. Nat Rev Drug Discov 9:215–236Google Scholar
  4. 4.
    Han TK, Everett RS, Proctor WR et al (2013) Organic cation transporter 1 (OCT1/mOct1) is localized in the apical membrane of Caco-2 cell monolayers and enterocytes. Mol Pharmacol 84:182–189PubMedGoogle Scholar
  5. 5.
    Hillgren KM, Keppler D, Zur AA et al (2013) Emerging transporters of clinical importance: an update from the international transporter consortium. Clin Pharmacol Ther 94:52–63PubMedGoogle Scholar
  6. 6.
    Ray AS, Cihlar T, Robinson KL et al (2006) Mechanism of active renal tubular efflux of tenofovir. Antimicrob Agents Chemother 50:3297–3304PubMedPubMedCentralGoogle Scholar
  7. 7.
    Alam C, Whyte-Allman SK, Omeragic A, Bendayan R (2016) Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 103:121–143PubMedGoogle Scholar
  8. 8.
    Atilano-Roque A, Roda G, Fogueri U, Kiser JJ, Joy MS (2016) Effect of disease pathologies on transporter expression and function. J Clin Pharmacol 56(Suppl 7):S205–S221PubMedGoogle Scholar
  9. 9.
    Bonkovsky HL, Hauri HP, Marti U, Gasser R, Meyer UA (1985) Cytochrome P450 of small intestinal epithelial cells. Immunochemical characterization of the increase in cytochrome P450 caused by phenobarbital. Gastroenterology 88:458–467PubMedGoogle Scholar
  10. 10.
    Dietrich CG, Geier A, Oude Elferink RPABC (2003) Of oral bioavailability: transporters as gatekeepers in the gut. Gut 52:1788–1795PubMedPubMedCentralGoogle Scholar
  11. 11.
    Glaeser H, Bailey DG, Dresser GK et al (2007) Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin Pharmacol Ther 81:362–370PubMedGoogle Scholar
  12. 12.
    Katsura T, Inui K (2003) Intestinal absorption of drugs mediated by drug transporters: mechanisms and regulation. Drug Metab Pharmacokinet 18:1–15PubMedGoogle Scholar
  13. 13.
    Lin JH, Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 42:59–98PubMedGoogle Scholar
  14. 14.
    Lee CA, Cook JA, Reyner EL, Smith DA (2010) P-glycoprotein related drug interactions: clinical importance and a consideration of disease states. Expert Opin Drug Metab Toxicol 6:603–619PubMedGoogle Scholar
  15. 15.
    Nies AT, Schwab M, Keppler D (2008) Interplay of conjugating enzymes with OATP uptake transporters and ABCC/MRP efflux pumps in the elimination of drugs. Expert Opin Drug Metab Toxicol 4:545–568PubMedGoogle Scholar
  16. 16.
    Smith NF, Figg WD, Sparreboom A (2005) Role of the liver-specific transporters OATP1B1 and OATP1B3 in governing drug elimination. Expert Opin Drug Metab Toxicol 1:429–445PubMedGoogle Scholar
  17. 17.
    Snoeys J, Beumont M, Monshouwer M, Ouwerkerk-Mahadevan S (2016) Mechanistic understanding of the nonlinear pharmacokinetics and intersubject variability of simeprevir: a PBPK-guided drug development approach. Clin Pharmacol Ther 99:224–234PubMedGoogle Scholar
  18. 18.
    Kusuhara H, Sugiyama Y (2010) Pharmacokinetic modeling of the hepatobiliary transport mediated by cooperation of uptake and efflux transporters. Drug Metab Rev 42:539–550PubMedGoogle Scholar
  19. 19.
    Kalliokoski A, Niemi M (2009) Impact of OATP transporters on pharmacokinetics. Br J Pharmacol 158:693–705PubMedPubMedCentralGoogle Scholar
  20. 20.
    Cihlar T, Ho ES, Lin DC, Mulato AS (2001) Human renal organic anion transporter 1 (hOAT1) and its role in the nephrotoxicity of antiviral nucleotide analogs. Nucleosides Nucleotides Nucleic Acids 20:641–648PubMedGoogle Scholar
  21. 21.
    Ho ES, Lin DC, Mendel DB, Cihlar T (2000) Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol 11:383–393PubMedGoogle Scholar
  22. 22.
    Li M, Anderson GD, Wang J (2006) Drug-drug interactions involving membrane transporters in the human kidney. Expert Opin Drug Metab Toxicol 2:505–532PubMedGoogle Scholar
  23. 23.
    Murphy MD, O'Hearn M, Chou S (2003) Fatal lactic acidosis and acute renal failure after addition of tenofovir to an antiretroviral regimen containing didanosine. Clin Infect Dis 36:1082–1085PubMedGoogle Scholar
  24. 24.
    Maiche AG (1986) Acute renal failure due to concomitant action of methotrexate and indomethacin. Lancet 1:1390PubMedGoogle Scholar
  25. 25.
    El-Sheikh AA, van den Heuvel JJ, Koenderink JB, Russel FG (2007) Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther 320:229–235PubMedGoogle Scholar
  26. 26.
    Urquhart BL, Kim RB (2009) Blood-brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol 65:1063–1070PubMedGoogle Scholar
  27. 27.
    Ohtsuki S (2004) New aspects of the blood-brain barrier transporters; its physiological roles in the central nervous system. Biol Pharm Bull 27:1489–1496PubMedGoogle Scholar
  28. 28.
    Ohtsuki S, Terasaki T (2007) Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 24:1745–1758PubMedGoogle Scholar
  29. 29.
    Kim RB, Fromm MF, Wandel C et al (1998) The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 101:289–294PubMedPubMedCentralGoogle Scholar
  30. 30.
    Shaik N, Giri N, Pan G, Elmquist WF (2007) P-glycoprotein-mediated active efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and brain distribution. Drug Metab Dispos 35:2076–2085PubMedGoogle Scholar
  31. 31.
    Best BM, Letendre SL, Brigid E et al (2009) Low atazanavir concentrations in cerebrospinal fluid. AIDS 23:83–87PubMedPubMedCentralGoogle Scholar
  32. 32.
    Marra CM, Zhao Y, Clifford DB et al (2009) Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 23:1359–1366PubMedPubMedCentralGoogle Scholar
  33. 33.
    Minuesa G, Purcet S, Erkizia I et al (2008) Expression and functionality of anti-human immunodeficiency virus and anticancer drug uptake transporters in immune cells. J Pharmacol Exp Ther 324:558–567PubMedGoogle Scholar
  34. 34.
    Turriziani O, Gianotti N, Falasca F et al (2008) Expression levels of MDR1, MRP1, MRP4, and MRP5 in peripheral blood mononuclear cells from HIV infected patients failing antiretroviral therapy. J Med Virol 80:766–771PubMedGoogle Scholar
  35. 35.
    Wang X, Furukawa T, Nitanda T et al (2003) Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Mol Pharmacol 63:65–72PubMedGoogle Scholar
  36. 36.
    Janneh O, Anwar T, Jungbauer C et al (2009) P-glycoprotein, multidrug resistance-associated proteins and human organic anion transporting polypeptide influence the intracellular accumulation of atazanavir. Antivir Ther 14:965–974PubMedGoogle Scholar
  37. 37.
    Janneh O, Hartkoorn RC, Jones E et al (2008) Cultured CD4T cells and primary human lymphocytes express hOATPs: intracellular accumulation of saquinavir and lopinavir. Br J Pharmacol 155:875–883PubMedPubMedCentralGoogle Scholar
  38. 38.
    Janneh O, Owen A, Chandler B et al (2005) Modulation of the intracellular accumulation of saquinavir in peripheral blood mononuclear cells by inhibitors of MRP1, MRP2, P-gp and BCRP. AIDS 19:2097–2102PubMedGoogle Scholar
  39. 39.
    Kerb R (2006) Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett 234:4–33PubMedGoogle Scholar
  40. 40.
    Tirona RG, Leake BF, Merino G, Kim RB (2001) Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem 276:35669–35675PubMedGoogle Scholar
  41. 41.
    Hartkoorn RC, Kwan WS, Shallcross V et al (2010) HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenet Genomics 20:112–120PubMedPubMedCentralGoogle Scholar
  42. 42.
    Lubomirov R, di Iulio J, Fayet A et al (2010) ADME pharmacogenetics: investigation of the pharmacokinetics of the antiretroviral agent lopinavir coformulated with ritonavir. Pharmacogenet Genomics 20:217–230PubMedGoogle Scholar
  43. 43.
    Kiser JJ, Aquilante CL, Anderson PL et al (2008) Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. J Acquir Immune Defic Syndr 47:298–303PubMedGoogle Scholar
  44. 44.
    Kiser JJ, Carten ML, Aquilante CL et al (2008) The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin Pharmacol Ther 83:265–272PubMedGoogle Scholar
  45. 45.
    Manosuthi W, Sukasem C, Thongyen S, Nilkamhang S, Sungkanuparph S (2014) ABCC2*1C and plasma tenofovir concentration are correlated to decreased glomerular filtration rate in patients receiving a tenofovir-containing antiretroviral regimen. J Antimicrob Chemother 69:2195–2201PubMedGoogle Scholar
  46. 46.
    Nishijima T, Komatsu H, Higasa K et al (2012) Single nucleotide polymorphisms in ABCC2 associate with tenofovir-induced kidney tubular dysfunction in Japanese patients with HIV-1 infection: a pharmacogenetic study. Clin Infect Dis 55:1558–1567PubMedGoogle Scholar
  47. 47.
    Rodriguez-Novoa S, Labarga P, Soriano V et al (2009) Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. Clin Infect Dis 48:e108–e116PubMedGoogle Scholar
  48. 48.
    Imaoka T, Kusuhara H, Adachi M et al (2007) Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol Pharmacol 71:619–627PubMedGoogle Scholar
  49. 49.
    Choi MK, Song IS (2008) Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab Pharmacokinet 23:243–253PubMedGoogle Scholar
  50. 50.
    Ieiri I, Higuchi S, Sugiyama Y (2009) Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol 5:703–729PubMedGoogle Scholar
  51. 51.
    Maeda K, Sugiyama Y (2008) Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab Pharmacokinet 23:223–235PubMedGoogle Scholar
  52. 52.
    Marzolini C, Paus E, Buclin T, Kim RB (2004) Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 75:13–33PubMedGoogle Scholar
  53. 53.
    Marzolini C, Tirona RG, Kim RB (2004) Pharmacogenomics of the OATP and OAT families. Pharmacogenomics 5:273–282PubMedGoogle Scholar
  54. 54.
    Annaert P, Ye ZW, Stieger B, Augustijns P (2010) Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica 40:163–176PubMedGoogle Scholar
  55. 55.
    Babu E, Takeda M, Narikawa S et al (2002) Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol 88:69–76PubMedGoogle Scholar
  56. 56.
    Badri PS, Dutta S, Wang H et al (2015) Drug interactions with the direct-acting antiviral combination of Ombitasvir and Paritaprevir-ritonavir. Antimicrob Agents Chemother 60:105–114PubMedPubMedCentralGoogle Scholar
  57. 57.
    Chu X, Cai X, Cui D et al (2013) Vitro assessment of drug-drug interaction potential of boceprevir associated with drug metabolizing enzymes and transporters. Drug Metab Dispos 41:668–681PubMedGoogle Scholar
  58. 58.
    Ci L, Kusuhara H, Adachi M et al (2007) Involvement of MRP4 (ABCC4) in the luminal efflux of ceftizoxime and cefazolin in the kidney. Mol Pharmacol 71:1591–1597PubMedGoogle Scholar
  59. 59.
    Cihlar T, Lin DC, Pritchard JB et al (1999) The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharmacol 56:570–580PubMedGoogle Scholar
  60. 60.
    Custodio JM, Wang H, Hao J et al (2014) Pharmacokinetics of cobicistat boosted-elvitegravir administered in combination with rosuvastatin. J Clin Pharmacol 54:649–656PubMedGoogle Scholar
  61. 61.
    Fujita Y, Noguchi K, Suzuki T, Katayama K, Sugimoto Y (2013) Biochemical interaction of anti-HCV telaprevir with the ABC transporters P-glycoprotein and breast cancer resistance protein. BMC Res Notes 6:445PubMedPubMedCentralGoogle Scholar
  62. 62.
    Furihata T, Fu Z, Suzuki Y et al (2015) Differential inhibition features of direct-acting anti-hepatitis C virus agents against human organic anion transporting polypeptide 2B1. Int J Antimicrob Agents 46:381–388PubMedGoogle Scholar
  63. 63.
    Furihata T, Matsumoto S, Fu Z et al (2014) Different interaction profiles of direct-acting anti-hepatitis C virus agents with human organic anion transporting polypeptides. Antimicrob Agents Chemother 58:4555–4564PubMedPubMedCentralGoogle Scholar
  64. 64.
    Ganapathy ME, Brandsch M, Prasad PD, Ganapathy V, Leibach FH (1995) Differential recognition of beta -lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J Biol Chem 270:25672–25677PubMedGoogle Scholar
  65. 65.
    Garg V, Chandorkar G, Farmer HF et al (2012) Effect of telaprevir on the pharmacokinetics of midazolam and digoxin. J Clin Pharmacol 52:1566–1573PubMedGoogle Scholar
  66. 66.
    Garimella T, You X, Wang R et al (2016) A review of Daclatasvir drug-drug interactions. Adv Ther 33:1867–1884PubMedPubMedCentralGoogle Scholar
  67. 67.
    Gupta A, Unadkat JD, Mao Q (2007) Interactions of azole antifungal agents with the human breast cancer resistance protein (BCRP). J Pharm Sci 96:3226–3235PubMedGoogle Scholar
  68. 68.
    Gupta A, Zhang Y, Unadkat JD, Mao QHIV (2004) Protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther 310:334–341PubMedGoogle Scholar
  69. 69.
    Hill G, Cihlar T, Oo C et al (2002) The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion-correlation of in vivo and in vitro studies. Drug Metab Dispos 30:13–19PubMedGoogle Scholar
  70. 70.
    Hoque MT, Kis O, De Rosa MF, Bendayan R (2015) Raltegravir permeability across blood-tissue barriers and the potential role of drug efflux transporters. Antimicrob Agents Chemother 59:2572–2582PubMedPubMedCentralGoogle Scholar
  71. 71.
    Hyland R, Dickins M, Collins C, Jones H, Jones B (2008) Maraviroc: in vitro assessment of drug-drug interaction potential. Br J Clin Pharmacol 66:498–507PubMedPubMedCentralGoogle Scholar
  72. 72.
    Jung N, Lehmann C, Rubbert A et al (2008) Relevance of the organic cation transporters 1 and 2 for antiretroviral drug therapy in human immunodeficiency virus infection. Drug Metab Dispos 36:1616–1623PubMedGoogle Scholar
  73. 73.
    Kis O, Robillard K, Chan GN, Bendayan R (2009) The complexities of antiretroviral drug-drug interactions: role of ABC and SLC transporters. Trends Pharmacol Sci 31:22–35PubMedGoogle Scholar
  74. 74.
    Kobayashi Y, Sakai R, Ohshiro N et al (2005) Possible involvement of organic anion transporter 2 on the interaction of theophylline with erythromycin in the human liver. Drug Metab Dispos 33:619–622PubMedGoogle Scholar
  75. 75.
    Kunze A, Huwyler J, Camenisch G, Gutmann H (2012) Interaction of the antiviral drug telaprevir with renal and hepatic drug transporters. Biochem Pharmacol 84:1096–1102PubMedGoogle Scholar
  76. 76.
    Lempers VJ, van den Heuvel JJ, Russel FG et al (2016) Inhibitory potential of antifungal drugs on ATP-binding cassette transporters P-glycoprotein, MRP1 to MRP5, BCRP, and BSEP. Antimicrob Agents Chemother 60:3372–3379PubMedPubMedCentralGoogle Scholar
  77. 77.
    Lepist EI, Zhang X, Hao J et al (2014) Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat. Kidney Int 86:350–357PubMedPubMedCentralGoogle Scholar
  78. 78.
    Li M, Andrew MA, Wang J et al (2009) Effects of cranberry juice on pharmacokinetics of beta-lactam antibiotics following oral administration. Antimicrob Agents Chemother 53:2725–2732PubMedPubMedCentralGoogle Scholar
  79. 79.
    Maeda T, Takahashi K, Ohtsu N et al (2007) Identification of influx transporter for the quinolone antibacterial agent levofloxacin. Mol Pharm 4:85–94PubMedGoogle Scholar
  80. 80.
    Marzolini C, Gibbons S, Khoo S, Back D (2016) Cobicistat versus ritonavir boosting and differences in the drug-drug interaction profiles with comedications. J Antimicrob Chemother 71:1755–1758PubMedGoogle Scholar
  81. 81.
    Miller DS (2001) Nucleoside phosphonate interactions with multiple organic anion transporters in renal proximal tubule. J Pharmacol Exp Ther 299:567–574PubMedGoogle Scholar
  82. 82.
    Minuesa G, Volk C, Molina-Arcas M et al (2009) Transport of lamivudine [(−)-beta-L-2′,3′-dideoxy-3′-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther 329:252–261PubMedGoogle Scholar
  83. 83.
    Mogalian E, German P, Kearney BP et al (2016) Use of multiple probes to assess transporter- and cytochrome P450-mediated drug-drug interaction potential of the Pangenotypic HCV NS5A inhibitor Velpatasvir. Clin Pharmacokinet 55:605–613PubMedGoogle Scholar
  84. 84.
    Morimoto K, Nakakariya M, Shirasaka Y et al (2008) Oseltamivir (Tamiflu) efflux transport at the blood-brain barrier via P-glycoprotein. Drug Metab Dispos 36:6–9PubMedGoogle Scholar
  85. 85.
    Moss DM, Kwan WS, Liptrott NJ et al (2011) Raltegravir is a substrate for SLC22A6: a putative mechanism for the interaction between raltegravir and tenofovir. Antimicrob Agents Chemother 55:879–887PubMedGoogle Scholar
  86. 86.
    Moss DM, Liptrott NJ, Curley P et al (2013) Rilpivirine inhibits drug transporters ABCB1, SLC22A1, and SLC22A2 in vitro. Antimicrob Agents Chemother 57:5612–5618PubMedPubMedCentralGoogle Scholar
  87. 87.
    Moss DM, Liptrott NJ, Siccardi M, Owen A (2015) Interactions of antiretroviral drugs with the SLC22A1 (OCT1) drug transporter. Front Pharmacol 6:78PubMedPubMedCentralGoogle Scholar
  88. 88.
    Moss DM, Siccardi M, Murphy M et al (2012) Divalent metals and pH alter raltegravir disposition in vitro. Antimicrob Agents Chemother 56:3020–3026PubMedPubMedCentralGoogle Scholar
  89. 89.
    Muller F, Konig J, Hoier E, Mandery K, Fromm MF (2013) Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine. Biochem Pharmacol 86:808–815PubMedGoogle Scholar
  90. 90.
    Nies AT, Damme K, Schaeffeler E, Schwab M (2012) Multidrug and toxin extrusion proteins as transporters of antimicrobial drugs. Expert Opin Drug Metab Toxicol 8:1565–1577PubMedGoogle Scholar
  91. 91.
    Ogihara T, Kano T, Wagatsuma T et al (2009) Oseltamivir (tamiflu) is a substrate of peptide transporter 1. Drug Metab Dispos 37:1676–1681PubMedGoogle Scholar
  92. 92.
    Okuda M, Kimura N, Inui K (2006) Interactions of fluoroquinolone antibacterials, DX-619 and levofloxacin, with creatinine transport by renal organic cation transporter hOCT2. Drug Metab Pharmacokinet 21:432–436PubMedGoogle Scholar
  93. 93.
    Ouwerkerk-Mahadevan S, Snoeys J, Peeters M, Beumont-Mauviel M, Simion A (2016) Drug-drug interactions with the NS3/4A protease inhibitor Simeprevir. Clin Pharmacokinet 55:197–208PubMedGoogle Scholar
  94. 94.
    Polli JW, Jarrett JL, Studenberg SD et al (1999) Role of P-glycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharm Res 16:1206–1212PubMedGoogle Scholar
  95. 95.
    Reese MJ, Savina PM, Generaux GT et al (2013) Vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor. Drug Metab Dispos 41:353–361PubMedGoogle Scholar
  96. 96.
    Reznicek J, Ceckova M, Cerveny L, Muller F, Staud F (2017) Emtricitabine is a substrate of MATE1 but not of OCT1, OCT2, P-gp, BCRP or MRP2 transporters. Xenobiotica 47:77–85PubMedGoogle Scholar
  97. 97.
    Rizk ML, Houle R, Chan GH et al (2014) Raltegravir has a low propensity to cause clinical drug interactions through inhibition of major drug transporters: an in vitro evaluation. Antimicrob Agents Chemother 58:1294–1301PubMedPubMedCentralGoogle Scholar
  98. 98.
    Sakurai Y, Motohashi H, Ueo H et al (2004) Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseases. Pharm Res 21:61–67PubMedGoogle Scholar
  99. 99.
    Sala-Rabanal M, Loo DD, Hirayama BA, Turk E, Wright EM (2006) Molecular interactions between dipeptides, drugs and the human intestinal H+ −oligopeptide cotransporter hPEPT1. J Physiol 574:149–166PubMedPubMedCentralGoogle Scholar
  100. 100.
    Sandhu P, Lee W, Xu X et al (2005) Hepatic uptake of the novel antifungal agent caspofungin. Drug Metab Dispos 33:676–682PubMedGoogle Scholar
  101. 101.
    Schuetz JD, Connelly MC, Sun D et al (1999) MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 5:1048–1051PubMedGoogle Scholar
  102. 102.
    Seithel A, Eberl S, Singer K et al (2007) The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3. Drug Metab Dispos 35:779–786PubMedGoogle Scholar
  103. 103.
    Shibayama T, Sugiyama D, Kamiyama E et al (2007) Characterization of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, and meropenem as substrates of human renal transporters. Drug Metab Pharmacokinet 22:41–47PubMedGoogle Scholar
  104. 104.
    Siccardi M, D'Avolio A, Nozza S et al (2010) Maraviroc is a substrate for OATP1B1 in vitro and maraviroc plasma concentrations are influenced by SLCO1B1 521 T>C polymorphism. Pharmacogenet Genomics 20:759–765PubMedGoogle Scholar
  105. 105.
    Song IH, Zong J, Borland J et al (2016) The effect of Dolutegravir on the pharmacokinetics of metformin in healthy subjects. J Acquir Immune Defic Syndr 72:400–407PubMedPubMedCentralGoogle Scholar
  106. 106.
    Sulejmani N, Jafri SM, Gordon SC (2016) Pharmacodynamics and pharmacokinetics of elbasvir and grazoprevir in the treatment of hepatitis C. Expert Opin Drug Metab Toxicol 12:353–361PubMedGoogle Scholar
  107. 107.
    Susanto M, Benet LZ (2002) Can the enhanced renal clearance of antibiotics in cystic fibrosis patients be explained by P-glycoprotein transport? Pharm Res 19:457–462PubMedGoogle Scholar
  108. 108.
    Takeda M, Khamdang S, Narikawa S et al (2002) Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther 302:666–671PubMedGoogle Scholar
  109. 109.
    Takeda M, Khamdang S, Narikawa S et al (2002) Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther 300:918–924PubMedGoogle Scholar
  110. 110.
    Tirona RG, Leake BF, Wolkoff AW, Kim RB (2003) Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J Pharmacol Exp Ther 304:223–228PubMedGoogle Scholar
  111. 111.
    Ueo H, Motohashi H, Katsura T, Inui K (2005) Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem Pharmacol 70:1104–1113PubMedGoogle Scholar
  112. 112.
    Uwai Y, Ida H, Tsuji Y, Katsura T, Inui K (2007) Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res 24:811–815PubMedGoogle Scholar
  113. 113.
    VanWert AL, Gionfriddo MR, Sweet DH (2010) Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm Drug Dispos 31:1–71PubMedGoogle Scholar
  114. 114.
    Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K (2002) Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology 36:164–172PubMedGoogle Scholar
  115. 115.
    Vermeer LM, Isringhausen CD, Ogilvie BW, Buckley DB (2016) Evaluation of ketoconazole and its alternative clinical CYP3A4/5 inhibitors as inhibitors of drug transporters: the in vitro effects of ketoconazole, ritonavir, clarithromycin, and Itraconazole on 13 clinically-relevant drug transporters. Drug Metab Dispos 44:453–459PubMedGoogle Scholar
  116. 116.
    Weiss J, Becker JP, Haefeli WE (2014) Telaprevir is a substrate and moderate inhibitor of P-glycoprotein, a strong inductor of ABCG2, but not an activator of PXR in vitro. Int J Antimicrob Agents 43:184–188PubMedGoogle Scholar
  117. 117.
    Weiss J, Rose J, Storch CH et al (2007) Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother 59:238–245PubMedGoogle Scholar
  118. 118.
    Weiss J, Theile D, Ketabi-Kiyanvash N, Lindenmaier H, Haefeli WE (2007) Inhibition of MRP1/ABCC1, MRP2/ABCC2, and MRP3/ABCC3 by nucleoside, nucleotide, and non-nucleoside reverse transcriptase inhibitors. Drug Metab Dispos 35:340–344PubMedGoogle Scholar
  119. 119.
    Yamashita F, Ohtani H, Koyabu N et al (2006) Inhibitory effects of angiotensin II receptor antagonists and leukotriene receptor antagonists on the transport of human organic anion transporter 4. J Pharm Pharmacol 58:1499–1505PubMedGoogle Scholar
  120. 120.
    Ye ZW, Camus S, Augustijns P, Annaert P (2010) Interaction of eight HIV protease inhibitors with the canalicular efflux transporter ABCC2 (MRP2) in sandwich-cultured rat and human hepatocytes. Biopharm Drug Dispos 31:178–188PubMedGoogle Scholar
  121. 121.
    Zembruski NC, Haefeli WE, Weiss J (2011) Interaction potential of etravirine with drug transporters assessed in vitro. Antimicrob Agents Chemother 55:1282–1284PubMedGoogle Scholar
  122. 122.
    Lau YY, Huang Y, Frassetto L, Benet LZ (2007) Effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin Pharmacol Ther 81:194–204PubMedGoogle Scholar
  123. 123.
    Backman JT, Luurila H, Neuvonen M, Neuvonen PJ (2005) Rifampin markedly decreases and gemfibrozil increases the plasma concentrations of atorvastatin and its metabolites. Clin Pharmacol Ther 78:154–167PubMedGoogle Scholar
  124. 124.
    van Giersbergen PL, Treiber A, Schneiter R, Dietrich H, Dingemanse J (2007) Inhibitory and inductive effects of rifampin on the pharmacokinetics of bosentan in healthy subjects. Clin Pharmacol Ther 81:414–419PubMedGoogle Scholar
  125. 125.
    Dingemanse J, van Giersbergen PL, Patat A, Nilsson PN (2010) Mutual pharmacokinetic interactions between bosentan and lopinavir/ritonavir in healthy participants. Antivir Ther 15:157–163PubMedGoogle Scholar
  126. 126.
    Busti AJ, Bain AM, Hall RG 2nd et al (2008) Effects of atazanavir/ritonavir or fosamprenavir/ritonavir on the pharmacokinetics of rosuvastatin. J Cardiovasc Pharmacol 51:605–610PubMedGoogle Scholar
  127. 127.
    Kiser JJ, Gerber JG, Predhomme JA et al (2008) Drug/drug interaction between lopinavir/ritonavir and rosuvastatin in healthy volunteers. J Acquir Immune Defic Syndr 47:570–578PubMedGoogle Scholar
  128. 128.
    Jacobson TA (2004) Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol 94:1140–1146PubMedGoogle Scholar
  129. 129.
    Hulskotte EG, Feng HP, Xuan F et al (2013) Pharmacokinetic evaluation of the interaction between hepatitis C virus protease inhibitor boceprevir and 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors atorvastatin and pravastatin. Antimicrob Agents Chemother 57:2582–2588PubMedPubMedCentralGoogle Scholar
  130. 130.
    Moore KH, Yuen GJ, Raasch RH et al (1996) Pharmacokinetics of lamivudine administered alone and with trimethoprim-sulfamethoxazole. Clin Pharmacol Ther 59:550–558PubMedGoogle Scholar
  131. 131.
    Moellentin D, Picone C, Leadbetter E (2008) Memantine-induced myoclonus and delirium exacerbated by trimethoprim. Ann Pharmacother 42:443–447PubMedGoogle Scholar
  132. 132.
    Grun B, Kiessling MK, Burhenne J et al (2013) Trimethoprim-metformin interaction and its genetic modulation by OCT2 and MATE1 transporters. Br J Clin Pharmacol 76:787–796PubMedPubMedCentralGoogle Scholar
  133. 133.
    Jayasagar G, Krishna Kumar M, Chandrasekhar K, Madhusudan Rao C, Madhusudan Rao Y (2002) Effect of cephalexin on the pharmacokinetics of metformin in healthy human volunteers. Drug Metabol Drug Interact 19:41–48PubMedGoogle Scholar
  134. 134.
    Kusuhara H, Ito S, Kumagai Y et al (2011) Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther 89:837–844PubMedGoogle Scholar
  135. 135.
    Landersdorfer CB, Kirkpatrick CM, Kinzig M et al (2010) Competitive inhibition of renal tubular secretion of ciprofloxacin and metabolite by probenecid. Br J Clin Pharmacol 69:167–178PubMedPubMedCentralGoogle Scholar
  136. 136.
    Cundy KC (1999) Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin Pharmacokinet 36:127–143PubMedGoogle Scholar
  137. 137.
    Massarella JW, Nazareno LA, Passe S, Min B (1996) The effect of probenecid on the pharmacokinetics of zalcitabine in HIV-positive patients. Pharm Res 13:449–452PubMedGoogle Scholar
  138. 138.
    Landersdorfer CB, Kirkpatrick CM, Kinzig M et al (2008) Inhibition of flucloxacillin tubular renal secretion by piperacillin. Br J Clin Pharmacol 66:648–659PubMedPubMedCentralGoogle Scholar
  139. 139.
    Ding R, Tayrouz Y, Riedel KD et al (2004) Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther 76:73–84PubMedGoogle Scholar
  140. 140.
    Mertz D, Battegay M, Marzolini C, Mayr M (2009) Drug-drug interaction in a kidney transplant recipient receiving HIV salvage therapy and tacrolimus. Am J Kidney Dis 54:e1–e4PubMedGoogle Scholar
  141. 141.
    Capone D, Palmiero G, Gentile A et al (2007) A pharmacokinetic interaction between clarithromycin and sirolimus in kidney transplant recipient. Curr Drug Metab 8:379–381PubMedGoogle Scholar
  142. 142.
    Wakasugi H, Yano I, Ito T et al (1998) Effect of clarithromycin on renal excretion of digoxin: interaction with P-glycoprotein. Clin Pharmacol Ther 64:123–128PubMedGoogle Scholar
  143. 143.
    Rollot F, Pajot O, Chauvelot-Moachon L et al (2004) Acute colchicine intoxication during clarithromycin administration. Ann Pharmacother 38:2074–2077PubMedGoogle Scholar
  144. 144.
    Jalava KM, Partanen J, Neuvonen PJ (1997) Itraconazole decreases renal clearance of digoxin. Ther Drug Monit 19:609–613PubMedGoogle Scholar
  145. 145.
    Mathias A (2015) Drug interactions between the anti-HCV regimen ledipasvir/sofosbuvir and antiretrovirals. In: International Workshop on Clinical Pharmacology of HIV & Hepatitis Therapy, Washington, DCGoogle Scholar
  146. 146.
    Greiner B, Eichelbaum M, Fritz P et al (1999) The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 104:147–153PubMedPubMedCentralGoogle Scholar
  147. 147.
    Piscitelli SC, Burstein AH, Chaitt D, Alfaro RM, Falloon J (2000) Indinavir concentrations and St John's wort. Lancet 355:547–548PubMedGoogle Scholar
  148. 148.
    Naesens M, Kuypers DR, Streit F et al (2006) Rifampin induces alterations in mycophenolic acid glucuronidation and elimination: implications for drug exposure in renal allograft recipients. Clin Pharmacol Ther 80:509–521PubMedGoogle Scholar
  149. 149.
    Bickel M, Khaykin P, Stephan C et al (2013) Acute kidney injury caused by tenofovir disoproxil fumarate and diclofenac co-administration. HIV Med 14:633–638PubMedGoogle Scholar
  150. 150.
    Morelle J, Labriola L, Lambert M et al (2009) Tenofovir-related acute kidney injury and proximal tubule dysfunction precipitated by diclofenac: a case of drug-drug interaction. Clin Nephrol 71:567–570PubMedGoogle Scholar
  151. 151.
    Food and Drug Administration (2012) Guidance for Industry: drug interactions studies- study design, data analysis, and implications for dosing, and labeling recommendationsGoogle Scholar
  152. 152.
    European Medicine Agency (2012) Guideline on the investigation of drug interactionsGoogle Scholar
  153. 153.
    Urquhart BL, Tirona RG, Kim RB (2007) Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol 47:566–578PubMedGoogle Scholar
  154. 154.
    Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839Google Scholar
  155. 155.
    Kim RB, Wandel C, Leake B et al (1999) Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 16:408–414PubMedGoogle Scholar
  156. 156.
    Shitara Y, Hirano M, Sato H, Sugiyama Y (2004) Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 311:228–236PubMedGoogle Scholar
  157. 157.
    Niemi M, Backman JT, Neuvonen M, Neuvonen PJ (2003) Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics and pharmacodynamics of repaglinide: potentially hazardous interaction between gemfibrozil and repaglinide. Diabetologia 46:347–351PubMedGoogle Scholar
  158. 158.
    Meyer zu Schwabedissen HE, Kim RB (2009) Hepatic OATP1B transporters and nuclear receptors PXR and CAR: interplay, regulation of drug disposition genes, and single nucleotide polymorphisms. Mol Pharm 6:1644–1661PubMedGoogle Scholar
  159. 159.
    Zhang L, Zhang Y, Huang SM (2009) Scientific and regulatory perspectives on metabolizing enzyme-transporter interplay and its role in drug interactions: challenges in predicting drug interactions. Mol Pharm 6:1766–1774PubMedGoogle Scholar
  160. 160.
    Hagenbuch B, Gui C (2008) Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 38:778–801PubMedGoogle Scholar
  161. 161.
    Hsiang B, Zhu Y, Wang Z et al (1999) A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem 274:37161–37168PubMedGoogle Scholar
  162. 162.
    Kobayashi D, Nozawa T, Imai K et al (2003) Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J Pharmacol Exp Ther 306:703–708PubMedGoogle Scholar
  163. 163.
    Konig J, Cui Y, Nies AT, Keppler DA (2000) Novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol 278:G156–G164PubMedGoogle Scholar
  164. 164.
    Kullak-Ublick GA, Hagenbuch B, Stieger B et al (1995) Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology 109:1274–1282PubMedGoogle Scholar
  165. 165.
    Tamai I, Nezu J, Uchino H et al (2000) Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun 273:251–260PubMedGoogle Scholar
  166. 166.
    Martin PD, Warwick MJ, Dane AL et al (2003) Metabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clin Ther 25:2822–2835PubMedGoogle Scholar
  167. 167.
    Kitamura S, Maeda K, Wang Y, Sugiyama Y (2008) Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos 36:2014–2023PubMedGoogle Scholar
  168. 168.
    Huang L, Wang Y, Grimm S (2006) ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab Dispos 34:738–742PubMedGoogle Scholar
  169. 169.
    Dingemanse J, van Giersbergen PL (2004) Clinical pharmacology of bosentan, a dual endothelin receptor antagonist. Clin Pharmacokinet 43:1089–1115PubMedGoogle Scholar
  170. 170.
    Treiber A, Schneiter R, Hausler S, Stieger B (2007) Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin a, rifampicin, and sildenafil. Drug Metab Dispos 35:1400–1407PubMedGoogle Scholar
  171. 171.
    El-Sheikh AA, Masereeuw R, Russel FG (2008) Mechanisms of renal anionic drug transport. Eur J Pharmacol 585:245–255PubMedGoogle Scholar
  172. 172.
    Jariyawat S, Sekine T, Takeda M et al (1999) The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther 290:672–677PubMedGoogle Scholar
  173. 173.
    Cha SH, Sekine T, Fukushima JI et al (2001) Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol 59:1277–1286PubMedGoogle Scholar
  174. 174.
    Race JE, Grassl SM, Williams WJ, Holtzman EJ (1999) Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem Biophys Res Commun 255:508–514PubMedGoogle Scholar
  175. 175.
    Sekine T, Cha SH, Tsuda M et al (1998) Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett 429:179–182PubMedGoogle Scholar
  176. 176.
    Sekine T, Watanabe N, Hosoyamada M, Kanai Y, Endou H (1997) Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem 272:18526–18529Google Scholar
  177. 177.
    Burnell JM, Kirby WM (1951) Effectiveness of a new compound, benemid, in elevating serum penicillin concentrations. J Clin Invest 30:697–700PubMedPubMedCentralGoogle Scholar
  178. 178.
    Takeda M, Narikawa S, Hosoyamada M et al (2001) Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur J Pharmacol 419:113–120PubMedGoogle Scholar
  179. 179.
    Brown GR (1993) Cephalosporin-probenecid drug interactions. Clin Pharmacokinet 24:289–300PubMedGoogle Scholar
  180. 180.
    Cunningham RF, Israili ZH, Dayton PG (1981) Clinical pharmacokinetics of probenecid. Clin Pharmacokinet 6:135–151PubMedGoogle Scholar
  181. 181.
    Cundy KC, Petty BG, Flaherty J et al (1995) Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 39:1247–1252PubMedPubMedCentralGoogle Scholar
  182. 182.
    Mulato AS, Ho ES, Cihlar T (2000) Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J Pharmacol Exp Ther 295:10–15PubMedGoogle Scholar
  183. 183.
    Jung N, Taubert D (2009) Organic cation transporters and their roles in antiretroviral drug disposition. Expert Opin Drug Metab Toxicol 5:773–787PubMedGoogle Scholar
  184. 184.
    Koepsell H, Lips K, Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227–1251PubMedGoogle Scholar
  185. 185.
    Gorboulev V, Ulzheimer JC, Akhoundova A et al (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:871–881PubMedGoogle Scholar
  186. 186.
    Grundemann D, Babin-Ebell J, Martel F et al (1997) Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J Biol Chem 272:10408–10413Google Scholar
  187. 187.
    Busch AE, Karbach U, Miska D et al (1998) Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 54:342–352PubMedGoogle Scholar
  188. 188.
    van Crugten J, Bochner F, Keal J, Somogyi A (1986) Selectivity of the cimetidine-induced alterations in the renal handling of organic substrates in humans. Studies with anionic, cationic and zwitterionic drugs. J Pharmacol Exp Ther 236:481–487PubMedGoogle Scholar
  189. 189.
    Tanihara Y, Masuda S, Sato T et al (2007) Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol 74:359–371PubMedGoogle Scholar
  190. 190.
    Ito S, Kusuhara H, Kuroiwa Y et al (2010) Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine. J Pharmacol Exp Ther 333:341–350PubMedGoogle Scholar
  191. 191.
    German P, Liu HC, Szwarcberg J et al (2012) Effect of cobicistat on glomerular filtration rate in subjects with normal and impaired renal function. J Acquir Immune Defic Syndr 61:32–40PubMedGoogle Scholar
  192. 192.
    Koteff J, Borland J, Chen S et al (2013) A phase 1 study to evaluate the effect of dolutegravir on renal function via measurement of iohexol and para-aminohippurate clearance in healthy subjects. Br J Clin Pharmacol 75:990–996PubMedGoogle Scholar
  193. 193.
    Yao SY, Ng AM, Sundaram M et al (2001) Transport of antiviral 3′-deoxy-nucleoside drugs by recombinant human and rat equilibrative, nitrobenzylthioinosine (NBMPR)-insensitive (ENT2) nucleoside transporter proteins produced in Xenopus oocytes. Mol Membr Biol 18:161–167PubMedGoogle Scholar
  194. 194.
    Young JD, Yao SY, Baldwin JM, Cass CE, Baldwin SA (2013) The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Asp Med 34:529–547Google Scholar
  195. 195.
    Endres CJ, Moss AM, Govindarajan R, Choi DS, Unadkat JD (2009) The role of nucleoside transporters in the erythrocyte disposition and oral absorption of ribavirin in the wild-type and equilibrative nucleoside transporter 1−/− mice. J Pharmacol Exp Ther 331:287–296PubMedPubMedCentralGoogle Scholar
  196. 196.
    Anand BS, Patel J, Mitra AK (2003) Interactions of the dipeptide ester prodrugs of acyclovir with the intestinal oligopeptide transporter: competitive inhibition of glycylsarcosine transport in human intestinal cell line-Caco-2. J Pharmacol Exp Ther 304:781–791PubMedGoogle Scholar
  197. 197.
    Terada T, Inui K (2004) Peptide transporters: structure, function, regulation and application for drug delivery. Curr Drug Metab 5:85–94PubMedGoogle Scholar
  198. 198.
    Brandsch M (2009) Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls. Expert Opin Drug Metab Toxicol 5:887–905PubMedGoogle Scholar
  199. 199.
    Shen H, Smith DE, Yang T et al (1999) Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney. Am J Phys 276:F658–F665Google Scholar
  200. 200.
    Bretschneider B, Brandsch M, Neubert R (1999) Intestinal transport of beta-lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm Res 16:55–61PubMedGoogle Scholar
  201. 201.
    Juliano RL, Ling VA (1976) Surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162PubMedGoogle Scholar
  202. 202.
    Cordon-Cardo C, O'Brien JP, Casals D et al (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A 86:695–698PubMedPubMedCentralGoogle Scholar
  203. 203.
    Klimecki WT, Futscher BW, Grogan TM, Dalton WS (1994) P-glycoprotein expression and function in circulating blood cells from normal volunteers. Blood 83:2451–2458PubMedGoogle Scholar
  204. 204.
    Sugawara I, Kataoka I, Morishita Y et al (1988) Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by a monoclonal antibody, MRK 16. Cancer Res 48:1926–1929PubMedGoogle Scholar
  205. 205.
    Thiebaut F, Tsuruo T, Hamada H et al (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 84:7735–7738PubMedPubMedCentralGoogle Scholar
  206. 206.
    Schinkel AH, Smit JJ, van Tellingen O et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502PubMedGoogle Scholar
  207. 207.
    Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P (1995) Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin a. J Clin Invest 96:1698–1705PubMedPubMedCentralGoogle Scholar
  208. 208.
    Sparreboom A, van Asperen J, Mayer U et al (1997) Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci U S A 94:2031–2035PubMedPubMedCentralGoogle Scholar
  209. 209.
    Choo EF, Leake B, Wandel C et al (2000) Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos 28:655–660PubMedGoogle Scholar
  210. 210.
    Lin JH (2007) Transporter-mediated drug interactions: clinical implications and in vitro assessment. Expert Opin Drug Metab Toxicol 3:81–92PubMedGoogle Scholar
  211. 211.
    de Lannoy IA, Silverman M (1992) The MDR1 gene product, P-glycoprotein, mediates the transport of the cardiac glycoside, digoxin. Biochem Biophys Res Commun 189:551–557PubMedGoogle Scholar
  212. 212.
    Kawahara M, Sakata A, Miyashita T, Tamai I, Tsuji A (1999) Physiologically based pharmacokinetics of digoxin in mdr1a knockout mice. J Pharm Sci 88:1281–1287PubMedGoogle Scholar
  213. 213.
    Gutmann H, Fricker G, Drewe J, Toeroek M, Miller DS (1999) Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. Mol Pharmacol 56:383–389PubMedGoogle Scholar
  214. 214.
    Maxwell DL, Gilmour-White SK, Hall MR (1989) Digoxin toxicity due to interaction of digoxin with erythromycin. BMJ 298:572PubMedPubMedCentralGoogle Scholar
  215. 215.
    Kiso S, Cai SH, Kitaichi K et al (2000) Inhibitory effect of erythromycin on P-glycoprotein-mediated biliary excretion of doxorubicin in rats. Anticancer Res 20:2827–2834PubMedGoogle Scholar
  216. 216.
    Takara K, Tanigawara Y, Komada F et al (1999) Cellular pharmacokinetic aspects of reversal effect of itraconazole on P-glycoprotein-mediated resistance of anticancer drugs. Biol Pharm Bull 22:1355–1359PubMedGoogle Scholar
  217. 217.
    Hamman MA, Bruce MA, Haehner-Daniels BD, Hall SD (2001) The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther 69:114–121PubMedGoogle Scholar
  218. 218.
    Hebert MF, Roberts JP, Prueksaritanont T, Benet LZ (1992) Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 52:453–457PubMedGoogle Scholar
  219. 219.
    Westphal K, Weinbrenner A, Zschiesche M et al (2000) Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther 68:345–355PubMedGoogle Scholar
  220. 220.
    Hebert MF, Fisher RM, Marsh CL, Dressler D, Bekersky I (1999) Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol 39:91–96PubMedGoogle Scholar
  221. 221.
    Tong L, Phan TK, Robinson KL et al (2007) Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro. Antimicrob Agents Chemother 51:3498–3504PubMedPubMedCentralGoogle Scholar
  222. 222.
    Doyle LA, Yang W, Abruzzo LV et al (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 95:15665–15670PubMedPubMedCentralGoogle Scholar
  223. 223.
    Mao Q, Unadkat JD (2005) Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J 7:E118–E133PubMedPubMedCentralGoogle Scholar
  224. 224.
    Eisenblatter T, Galla HJA (2002) New multidrug resistance protein at the blood-brain barrier. Biochem Biophys Res Commun 293:1273–1278PubMedGoogle Scholar
  225. 225.
    Maliepaard M, Scheffer GL, Faneyte IF et al (2001) Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 61:3458–3464PubMedGoogle Scholar
  226. 226.
    van Herwaarden AE, Schinkel AH (2006) The function of breast cancer resistance protein in epithelial barriers, stem cells and milk secretion of drugs and xenotoxins. Trends Pharmacol Sci 27:10–16PubMedGoogle Scholar
  227. 227.
    Cole SP, Bhardwaj G, Gerlach JH et al (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654PubMedGoogle Scholar
  228. 228.
    Zhou SF, Wang LL, Di YM et al (2008) Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 15:1981–2039PubMedGoogle Scholar
  229. 229.
    Dazert P, Meissner K, Vogelgesang S et al (2003) Expression and localization of the multidrug resistance protein 5 (MRP5/ABCC5), a cellular export pump for cyclic nucleotides, in human heart. Am J Pathol 163:1567–1577PubMedPubMedCentralGoogle Scholar
  230. 230.
    Flens MJ, Zaman GJ, van der Valk P et al (1996) Tissue distribution of the multidrug resistance protein. Am J Pathol 148:1237–1247PubMedPubMedCentralGoogle Scholar
  231. 231.
    Keppler D, Konig J, Buchler M (1997) The canalicular multidrug resistance protein, cMRP/MRP2, a novel conjugate export pump expressed in the apical membrane of hepatocytes. Adv Enzym Regul 37:321–333Google Scholar
  232. 232.
    Schaub TP, Kartenbeck J, Konig J et al (1997) Expression of the conjugate export pump encoded by the mrp2 gene in the apical membrane of kidney proximal tubules. J Am Soc Nephrol 8:1213–1221PubMedGoogle Scholar
  233. 233.
    van Aubel RA, Smeets PH, Peters JG, Bindels RJ, Russel FG (2002) The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol 13:595–603PubMedGoogle Scholar
  234. 234.
    Zhang Y, Han H, Elmquist WF, Miller DW (2000) Expression of various multidrug resistance-associated protein (MRP) homologues in brain microvessel endothelial cells. Brain Res 876:148–153PubMedGoogle Scholar
  235. 235.
    Westley IS, Brogan LR, Morris RG, Evans AM, Sallustio BC (2006) Role of Mrp2 in the hepatic disposition of mycophenolic acid and its glucuronide metabolites: effect of cyclosporine. Drug Metab Dispos 34:261–266PubMedGoogle Scholar
  236. 236.
    Staatz CE, Tett SE (2007) Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet 46:13–58PubMedGoogle Scholar
  237. 237.
    Wolff NA, Burckhardt BC, Burckhardt G, Oellerich M, Armstrong VW (2007) Mycophenolic acid (MPA) and its glucuronide metabolites interact with transport systems responsible for excretion of organic anions in the basolateral membrane of the human kidney. Nephrol Dial Transplant 22:2497–2503PubMedGoogle Scholar
  238. 238.
    Kuypers DR, Verleden G, Naesens M, Vanrenterghem Y (2005) Drug interaction between mycophenolate mofetil and rifampin: possible induction of uridine diphosphate-glucuronosyltransferase. Clin Pharmacol Ther 78:81–88PubMedGoogle Scholar
  239. 239.
    Cui Y, Konig J, Keppler D (2001) Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol 60:934–943PubMedGoogle Scholar
  240. 240.
    Stieger B, Beuers U (2011) The canalicular bile salt export pump BSEP (ABCB11) as a potential therapeutic target. Curr Drug Targets 12:661–670PubMedGoogle Scholar
  241. 241.
    Yanni SB, Augustijns PF, Benjamin DK Jr et al (2010) In vitro investigation of the hepatobiliary disposition mechanisms of the antifungal agent micafungin in humans and rats. Drug Metab Dispos 38:1848–1856PubMedPubMedCentralGoogle Scholar
  242. 242.
    Byrne JA, Strautnieks SS, Mieli-Vergani G et al (2002) The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology 123:1649–1658PubMedGoogle Scholar
  243. 243.
    Moss DM, Marzolini C, Rajoli RK, Siccardi M (2015) Applications of physiologically based pharmacokinetic modeling for the optimization of anti-infective therapies. Expert Opin Drug Metab Toxicol 11:1203–1217PubMedGoogle Scholar
  244. 244.
    Siccardi M, Marzolini C, Seden K et al (2013) Prediction of drug-drug interactions between various antidepressants and efavirenz or boosted protease inhibitors using a physiologically based pharmacokinetic modelling approach. Clin Pharmacokinet 52:583–592PubMedGoogle Scholar
  245. 245.
    Jones HM, Barton HA, Lai Y et al (2012) Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data. Drug Metab Dispos 40:1007–1017PubMedGoogle Scholar
  246. 246.
    Burt HJ, Neuhoff S, Almond L et al (2016) Metformin and cimetidine: physiologically based pharmacokinetic modelling to investigate transporter mediated drug-drug interactions. Eur J Pharm Sci 88:70–82PubMedGoogle Scholar
  247. 247.
    Colbers A, Greupink R, Litjens C, Burger D, Russel FG (2016) Physiologically based modelling of Darunavir/ritonavir pharmacokinetics during pregnancy. Clin Pharmacokinet 55:381–396PubMedGoogle Scholar
  248. 248.
    De Sousa Mendes M, Hirt D, Urien S et al (2015) Physiologically-based pharmacokinetic modeling of renally excreted antiretroviral drugs in pregnant women. Br J Clin Pharmacol 80:1031–1041PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Darren Michael Moss
    • 1
    • 2
  • Marco Siccardi
    • 1
  • Catia Marzolini
    • 3
  1. 1.Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
  2. 2.School of PharmacyKeele UniversityKeeleUK
  3. 3.Division of Infectious Diseases and Hospital EpidemiologyUniversity Hospital Basel and University of BaselBaselSwitzerland

Personalised recommendations