Skip to main content

Wafer-Based Solar Cells: Materials and Fabrication Technologies

  • Chapter
  • First Online:
Solar Photovoltaics

Abstract

Solar cells convert solar energy into electrical energy by photoionic process referred to as photoelectric effect. The solar radiation may be considered as discrete bundles of energy called photons. The energy (E) of photons associated with radiation of frequency (ν) and wave length (λ) may be expressed as E = hν = h c\λ where h is Planck’s constant and c is the velocity of light. The radiation intensity is proportional to photon number density. As discussed in Chapter 2 the solar spectral irradiance ranges between the wave length region of 0.2–2.0 μm and has maximum invisible light region at 0.48 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Backus, C.E. (1977). Photovoltaic conversion. In: Solar Energy Engineering. Academic Press, New York.

    Google Scholar 

  • Blakers, A.W. and Green M.A. (1986). 20-percent efficient solar cell. Appl Physics Lett, 48: 215–217.

    Article  Google Scholar 

  • Blakers, A.W., Wang, A., Milne, A.M., Jhao, J. and Green, M.A. (1989). 22.8-percent efficient silicon solar cell. Appl Physics Letter, 55(13): 1363–1365.

    Article  Google Scholar 

  • Chaplin, D.M., Fuller, C.S. and Pearson, G.L. (1954). A new silicon p-n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 25: 676–677.

    Article  Google Scholar 

  • Gangadhar, R.B., Mathur, R.S., Sehgal, H.K. and Kulshreshta, A.P. (1967). Investigations of silicon p-n junction for solar energy conversion. Indian Journal of Pure and Applied Physics, 5: 593–595.

    Google Scholar 

  • Gover, A. and Stella, P. (1974). Vertical multi-junction solar-cell one-dimensional analysis. IEEE Transaction on Electron Devices, ED-21: 351.

    Article  Google Scholar 

  • Green, M.A. (1979). Solar cells—Operating principle, technology and system applications. A short course on solar photovoltaic systems at University of Queensland, Aug. 21–23.

    Google Scholar 

  • Green, M.A., Blaker, A.W., Zhao, J., Milne, A.M., Wang, A. and Dai, X. (1990). Characterization of 23 percent efficient silicon solar cells. IEEE Trans. on Electron Devices, 37(2): 331–335.

    Article  Google Scholar 

  • Jain, S.C., Sehgal, H.K. and Gangadhar, R.B. (1968). Silicon Solar Cells and Their Terrestrial Applicatins. Journal of Scientific & Industrial Research, 27(8): 295–305.

    Google Scholar 

  • Kaushika, N.D. (1996). 50 kW solar PV power plant in Rajasthan TEFR. Sun Source of India Ltd.

    Google Scholar 

  • Kazmerski, L.L. and Emery, K.A. (1992). Proc. 2nd World Renewable Energy Congress, Reading, U.K.

    Google Scholar 

  • McDaniels, D.K. (1979). The Sun: Our future energy source. John Wiley and Son Inc., New York.

    Google Scholar 

  • Milstein, J.B. and Tsno, Y.S. (1984). Research on crystalline silicon solar cells. Proc. 17th IEEE Photovolt. Special Conf. Orlando, FL.

    Google Scholar 

  • Reynolds, D.C., Leies, G., Antes, L.L. and Marburger, R.E. (1954). Photoelectric effect in cadmium sulphide. Physics Rev., 96: 533–534.

    Article  Google Scholar 

  • Smith, K.D., Gummel, H.K., Bode, J.D., Cuttriss, D.B., Nielsen, R.J. and Rosenzweig, W. (1963). The Solar Cells and Their Mounting. Bell System Technical Journal, 42: 1765–1816.

    Article  Google Scholar 

  • Wang, A., Zhao, J. and Green, M.A. (1990). 24-percent efficient silicon solar cells. Appl. Phys. Lett., 57: 602–604.

    Article  Google Scholar 

  • Wolf, M. (1960). Limitations and possibilities for improvement of photovoltaic energy converters, Part I: Considerations for Earth’s surface operation. Proc. Inst Radio Engg, 48: 1246–1263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaushika, N.D., Mishra, A., Rai, A.K. (2018). Wafer-Based Solar Cells: Materials and Fabrication Technologies. In: Solar Photovoltaics. Springer, Cham. https://doi.org/10.1007/978-3-319-72404-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72404-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72403-4

  • Online ISBN: 978-3-319-72404-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics