Skip to main content

Video Game Play, Mathematics, Spatial Skills, and Creativity—A Study of the Impact on Teacher Candidates

  • Chapter
  • First Online:
Creativity and Technology in Mathematics Education

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 10))

Abstract

This chapter explores the relationships among video gaming, spatial skills and creativity in mathematics education. Specifically, it highlights the importance of spatial abilities for pre-service elementary teachers, and suggests video games as a teaching approach for potentially enhancing creativity, spatial abilities, and mathematics performance. We argue that spatial abilities deserve more attention in mathematics education, as a major predictor of achievements in science, technology, engineering, and mathematical fields. To support this notion, we describe an experimental study that examined the effects of playing the Angry Birds and Action Video recreational video games on education majors’ math problem-solving and perceptions, math anxiety, working memory, and spatial skills. Individuals with high spatial abilities had significantly higher confidence in learning mathematics, ACT mathematics, science, composite scores, as well as geometry, word, and non-word math problem solving than individuals with low spatial abilities. In addition, students with low spatial abilities had significantly higher math anxiety. After ten hours of playing, both video game intervention groups significantly improved their spatial skills, working memory, and geometry performance from pre- to post-test. These findings suggest potential impact of video gaming in mathematics education and open new horizons for future research that explores how schools and homes working together with strategic gaming plans can help students improve their spatial reasoning and problem solving. The chapter concludes with future research suggestions on spatial abilities and creativity in mathematics education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beilock, S. L., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2010). Female teachers’ math anxiety affects girls’ math achievement. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 1860–1863.

    Article  Google Scholar 

  • Bjorklund, D. F., & Brown, R. D. (1998). Physical play and cognitive development: Integrating activity, cognition, and education. Child Development, 69(3), 604–606.

    Article  Google Scholar 

  • Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398.

    Article  Google Scholar 

  • Bragg, L. (2007). Students’ confilicting attitudes towards games as a vehicle for learning matheamtics: A methodological dilemma. Mathematics Education Research Journal, 19(1), 29–44.

    Article  Google Scholar 

  • Brown, D. L., & Wheatley, G. H. (1997). Components of imagery and mathematical understanding. Focus on Learning Problems in Mathematics, 19, 45–70.

    Google Scholar 

  • Burnett, S. A., Lane, D. M., & Dratt, L. M. (1979). Spatial visualization and sex differences in quantitative ability. Intelligence, 3(4), 345–354.

    Article  Google Scholar 

  • Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental Psychology, 31(4), 697–705.

    Article  Google Scholar 

  • Ceci, S. J., & Williams, W. M. (2007). Why aren’t more women in science. Top researchers debate the evidence. Washington, D.C.: American Psychological Association.

    Book  Google Scholar 

  • Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2–11.

    Article  Google Scholar 

  • Cherney, I. D. (2008). Mom, let me play more computer games: They improve my mental rotation skills. Sex Roles, 59(11–12), 776–786.

    Article  Google Scholar 

  • Cherney, I. D., & London, K. (2006). Gender-linked differences in the toys, television shows, computer games, and outdoor activities of 5-to 13-year-old children. Sex Roles, 54(9–10), 717–726.

    Article  Google Scholar 

  • Clark-Wilson, A., Robutti, O., & Sinclari, N. (Eds.). (2014). The mathematics teacher in the digital era: An international perspective on technology-focused professional development. Berlin, Germany: Springer.

    Google Scholar 

  • Cohen, C. A., & Hegarty, M. (2007). Sources of difficulty in imagining cross sections of 3D objects. In Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society (pp. 179–184). Austin, TX: Cognitive Science Society.

    Google Scholar 

  • Cohen, J. E., Green, C. S., & Bavelier, D. (2007). Training visual attention with video games: Not all genres are created equal. In H. O’Neil & R. Perez (Eds.), Computer games and team and individual learning (pp. 205–227).

    Google Scholar 

  • de Freitas, S. (2006). Learning in immersive worlds: A review of game-based learning. Retrieved from http://www.webarchive.org.uk/wayback/archive/20140615100504/http://www.jisc.ac.uk/media/documents/programmes/elearninginnovation/gamingreport_v3.pdf.

  • Dewey, B., Singletary, T., & Kinzel, M. (2009). Graphing calculator use in algebra teaching. School Science and Mathematics, 109(7), 383–393.

    Article  Google Scholar 

  • Dorval, M., & Pepin, M. (1986). Effect of playing a video game on a measure of spatial visualization. Perceptual and Motor Skills, 62(1), 159–162.

    Article  Google Scholar 

  • Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850–855.

    Article  Google Scholar 

  • Fennema, E., & Sherman, J. A. (1976a). Fennema-Sherman mathematics attitudes scales: Instruments designed to measure attitudes toward the learning of mathematics by females and males. Journal for Research in Mathematics Education, 7(5), 324–326.

    Article  Google Scholar 

  • Fennema, E., & Sherman, J. (1976b). Sex-related differences in mathematics learning: Myths, realities and related factors. Paper presented at the American Association for the Advancement of Science, Boston.

    Google Scholar 

  • Ferguson, C. J. (2007). The good, the bad and the ugly: A meta-analytic review of positive and negative effects of violent video games. Psychiatric Quarterly, 78(4), 309–316.

    Article  Google Scholar 

  • Freudenthal, H. (1971). Geometry between the devil and the deep sea. Educational Studies in Mathematics, 3, 413–435.

    Article  Google Scholar 

  • Friedman, I. A. (1995). Measuring school principal-experienced burnout. Educational and Psychological Measurement, 55(4), 641–651.

    Article  Google Scholar 

  • Gittler, G., & Glück, J. (1998). Differential transfer of learning: Effects of instruction in descriptive geometry on spatial test performance. Journal of Geometry and Graphics, 2(1), 71–84.

    Google Scholar 

  • Green, C. S., & Bavelier, D. (2006). The cognitive neuroscience of video games. In L. Humphreys & P. Messaris (Eds.), Digital media: Transformations in human communication (pp. 211–223). New York, NY: Peter Lang.

    Google Scholar 

  • Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychological Science, 18(1), 88–94.

    Article  Google Scholar 

  • Green, C. S., & Bavelier, D. (2012). Learning, attentional control, and action video games. Current Biology, 22(6), R197–R206.

    Article  Google Scholar 

  • Gresham, G. (2008). Mathematics anxiety and mathematics teacher efficacy in elementary pre-service teachers. Teaching Education, 19(3), 171–184.

    Article  Google Scholar 

  • Gunter, G., Kenny, R., & Vick, E. (2008). Taking educational games seriously: Using the RETAIN model to design endogenous fantasy into standalone educational games. Educational Technology Research and Development, 56(5/6), 511–537.

    Article  Google Scholar 

  • Halpern, D. F., & LaMay, M. L. (2000). The smarter sex: A critical review of sex differences in intelligence. Educational Psychology Review, 12(2), 229–246.

    Article  Google Scholar 

  • Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge Handbook of Visuospatial Thinking (pp. 121–169). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21(1), 33–46.

    Google Scholar 

  • Holzinger, K. J., & Swineford, F. (1946). The relation of two bi-factors to achievement in geometry and other subjects. Journal of Educational Psychology, 37(5), 257.

    Article  Google Scholar 

  • Hoyles, C., Noss, R., & Kent, P. (2004). On the integration of digital technologies into matheamtics classrooms. International Journal of Computers for Mathematical Learning, 9(3), 309–326.

    Article  Google Scholar 

  • Jackson, L. A., Witt, E. A., Games, A. I., Fitzgerald, H. E., von Eye, A., & Zhao, Y. (2011). Information technology use and creativity: Findings from the children and technology. Computers in Human Behavior, 28(2), 370–376. Retrieved from http://www.sciencedirect.com/science/article/pii/S0747563211002147.

  • Kell, H. J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2013). Creativity and technical innovation: Spatial ability’s unique role. Psychological Science, 24(9), 1831–1836. Retrieved from https://my.vanderbilt.edu/smpy/files/2013/01/Kell-et-al.-2013b1.pdf.

  • Lawrenz, F., Gravely, A., & Ooms, A. (2006). Perceived helfulness and amount of use of technology in science and matheatics classes at different grade levels. School Science and Mathematics, 106(3), 133–139.

    Article  Google Scholar 

  • Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12(5), 549.

    Article  Google Scholar 

  • Lin, S. F. (2011). Effect of opponent type on moral emotions and responses to video game play. Cyberpsychology, Behavior, and Social Networking, 14(11), 695–698.

    Article  Google Scholar 

  • Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479–1498.

    Google Scholar 

  • Lubinski, D., & Benbow, C. P. (2006). Study of mathematically precocious youth after 35 years: Uncovering antecedents for the development of math-science expertise. Perspectives on Psychological Science, 1, 316–345.

    Article  Google Scholar 

  • Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Maloney, E. A., Waechter, S., Risko, E. F., & Fugelsang, J. A. (2012). Reducing the sex difference in math anxiety: The role of spatial processing ability. Learning and Individual Differences, 22(3), 380–384.

    Article  Google Scholar 

  • Maxwell, J. W., Croake, J. W., & Biddle, A. P. (1975). Sex differences in the comprehension of spatial orientation. The Journal of Psychology, 91(1), 127–131.

    Article  Google Scholar 

  • McClurg, P. A., & Chaillé, C. (1987). Computer games: Environments for developing spatial cognition? Journal of Educational Computing Research, 3(1), 95–111.

    Article  Google Scholar 

  • Michigan State University. (2011, November 9). Video game playing tied to creativity, research shows. ScienceDaily. Retrieved February 18, 2017 from www.sciencedaily.com/releases/2011/11/111102125355.htm.

  • Mix, K. S., & Cheng, Y. L. (2011). The relation between space and math: Developmental and educational implications. Advances in Child Development and Behavior, 42, 197–243.

    Article  Google Scholar 

  • Moore, D. S., & Johnson, S. P. (2008). Mental rotation in human infants a sex difference. Psychological Science, 19(11), 1063–1066.

    Article  Google Scholar 

  • Moore, E. A. (2011, November 2). New study links video gaming to creativity. [Web log post] Cnet. Retrieved from https://www.cnet.com/news/new-study-links-video-gaming-to-creativity/.

  • Mortensen, E. L., Andresen, J., Kruuse, E., Sanders, S. A., & Reinisch, J. M. (2003). IQ stability: The relation between child and young adult intelligence test scores in low-birthweight samples. Scandinavian Journal of Psychology, 44(4), 395–398.

    Article  Google Scholar 

  • NCTM. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Newcombe, N. S. (2007). Taking science seriously: Straight thinking about spatial sex differences. Washington, D.C.: American Psychological Association.

    Google Scholar 

  • Novak, E., & Tassell, J. L. (2015). Using video game play to improve education-majors’ mathematical performance: An experimental study. Computers in Human Behavior, 53, 124–130. https://doi.org/10.1016/j.chb.2015.07.001.

  • Novak, E., & Tassell, J. L. (2017). Studying preservice teacher math anxiety and mathematics performance in geometry, word, and non-word problem solving. Learning and Individual Differences, 54, 20–29.

    Google Scholar 

  • Okagaki, L., & Frensch, P. A. (1994). Effects of video game playing on measures of spatial performance: Gender effects in late adolescence. Journal of Applied developmental Psychology, 15(1), 33–58.

    Article  Google Scholar 

  • Ozel, S., Larue, J., & Molinaro, C. (2004). Relation between sport and spatial imagery: Comparison of three groups of participants. The Journal of Psychology, 138(1), 49–64.

    Article  Google Scholar 

  • Pittalis, M., & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75(2), 191–212.

    Article  Google Scholar 

  • Price, J. (2010). The effect of instructor race and gender on student persistence in STEM fields. Economics of Education Review, 29(6), 901–910.

    Article  Google Scholar 

  • Russo, D. M., Diletti, J., Strzelec, J., Reeb, C., Schillace, J., Martin, A., et al. (2013). A study of how angry birds has been used in mathematics education. Digital Experiences in Mathematics Education, 1(2), 107–132.

    Google Scholar 

  • Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604–614.

    Article  Google Scholar 

  • Spence, I., & Feng, J. (2010). Video games and spatial cognition. Review of General Psychology, 14(2), 92.

    Article  Google Scholar 

  • Spence, I., Yu, J. J., Feng, J., & Marshman, J. (2009). Women match men when learning a spatial skill. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(4), 1097.

    Google Scholar 

  • Subrahmanyam, K., & Greenfield, P. M. (1994). Effect of video game practice on spatial skills in girls and boys. Journal of Applied Developmental Psychology, 15(1), 13–32.

    Article  Google Scholar 

  • Terlecki, M. S., & Newcombe, N. S. (2005). How important is the digital divide? The relation of computer and videogame usage to gender differences in mental rotation ability. Sex Roles, 53(5), 433–441.

    Article  Google Scholar 

  • Terlecki, M. S., Newcombe, N. S., & Little, M. (2008). Durable and generalized effects of spatial experience on mental rotation: Gender differences in growth patterns. Applied Cognitive Psychology, 22(7), 996–1013.

    Article  Google Scholar 

  • Tracy, D. M. (1987). Toys, spatial ability, and science and mathematics achievement: Are they related? Sex Roles, 17(3–4), 115–138.

    Article  Google Scholar 

  • Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28(2), 127–154. https://doi.org/10.1016/0749-596X(89)90040-5.

  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A., Warren, C., et al. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402.

    Article  Google Scholar 

  • Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604.

    Article  Google Scholar 

  • van Garderen, D. (2006). Spatial visualization, visual imagery, and mathematical problem solving of students with varying abilities. Journal of Learning Disabilities, 39(6), 496–506.

    Article  Google Scholar 

  • Wai, J. (2013). Why we need to value students’ spatial creativity. MindShift. Retrieved from https://ww2.kqed.org/mindshift/2013/07/31/why-we-need-to-value-spatial-creativity/.

  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology101(4), 817–835. Retrieved from https://www.psychologytoday.com/files/attachments/56143/spatial-ability-stem-domains.pdf.

  • Watson, W. R., & Fang, J. (2012). PBL as a framework for implementing video games in the classroom. International Journal of Game-Based Learning (IJGBL), 2(1), 77–89.

    Article  Google Scholar 

  • Wetzel, J. (2013). Early spatial reasoning predicts later creativity and innovation, especially in STEM fields. Research News @ Vanderbilt. Retrieved from https://news.vanderbilt.edu/2013/07/15/early-spatial-reasoning-predicts-later-creativity-and-innovation/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Lynne Tassell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tassell, J.L., Novak, E., Wu, M. (2018). Video Game Play, Mathematics, Spatial Skills, and Creativity—A Study of the Impact on Teacher Candidates. In: Freiman, V., Tassell, J. (eds) Creativity and Technology in Mathematics Education. Mathematics Education in the Digital Era, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-72381-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72381-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72379-2

  • Online ISBN: 978-3-319-72381-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics