Skip to main content

Time Series Analysis

  • Chapter
  • First Online:
Mathematica for Bioinformatics

Abstract

Biological processes are inherently dynamic. From the tiniest molecule in our cells, to cells themselves, tissues, organisms and systems, nothing is essentially static. This includes the study of development, disease, and the action of drugs and aging. Continuous dynamic interactions at different spatial and temporal scales are ubiquitous and only through modeling the dynamics can we achieve a systems level knowledge in biology and genetics (Bar-Joseph et al., Nat. Rev. Genet. 13(8):552–564, 2012), [3]. Time series analysis is available in the Wolfram Language, and in this chapter we introduce the basic capabilities available through a variety of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: 2nd Inter. Symp. on Information Theory, Akademiai Kidao, 1973 (1973)

    Google Scholar 

  2. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

    Google Scholar 

  3. Bar-Joseph, Z., Gitter, A., Simon, I.: Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet. 13(8), 552–64 (2012)

    Google Scholar 

  4. Box, G.E.P., Pierce, D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Stat. Assoc. 65(332), 1509–1526 (1970). https://doi.org/10.1080/01621459.1970.10481180

  5. Bretthorst, G.L.: Generalizing the lomb-scargle periodogram. pp. 241–245. IOP INSTITUTE OF PHYSICS PUBLISHING LTD

    Google Scholar 

  6. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer Series in Statistics, 2nd edn. Springer, Berlin, New York (1991)

    Google Scholar 

  7. Chatfield, C.: The Analysis of Time Series: an Introduction. CRC press, Boca Raton (2016)

    Google Scholar 

  8. Chen, R., Mias, G.I., Li-Pook-Than, J., Jiang, L., Lam, H.Y., Chen, R., Miriami, E., Karczewski, K.J., Hariharan, M., Dewey, F.E., Cheng, Y., Clark, M.J., Im, H., Habegger, L., Balasubramanian, S., O’Huallachain, M., Dudley, J.T., Hillenmeyer, S., Haraksingh, R., Sharon, D., Euskirchen, G., Lacroute, P., Bettinger, K., Boyle, A.P., Kasowski, M., Grubert, F., Seki, S., Garcia, M., Whirl-Carrillo, M., Gallardo, M., Blasco, M.A., Greenberg, P.L., Snyder, P., Klein, T.E., Altman, R.B., Butte, A.J., Ashley, E.A., Gerstein, M., Nadeau, K.C., Tang, H., Snyder, M.: Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148(6), 1293–307 (2012)

    Google Scholar 

  9. Kanehisa, M., Goto, S.: Kegg: kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 28(1), 27–30 (2000)

    Google Scholar 

  10. Kirchgässner, G., Wolters, J., Hassler, U.: Introduction to Modern Time Series Analysis. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  11. Ljung, G.M., Box, G.E.P.: On a measure of lack of fit in time series models. Biometrika 65(2), 297–303 (1978). https://doi.org/10.1093/biomet/65.2.297

  12. Lomb, N.: Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39(2), 447–462 (1976)

    Google Scholar 

  13. Madsen, H.: Time Series Analysis. CRC Press, Boca Raton (2007)

    Google Scholar 

  14. Mias, G., Snyder, M.: Personal genomes, quantitative dynamic omics and personalized medicine. Quant. Biol. 1(1), 71–90 (2013)

    Google Scholar 

  15. Mias, G.I., Snyder, M.: Multimodal dynamic profiling of healthy and diseased states for future personalized health care. Clin. Pharmacol. Ther. 93(1), 29–32 (2013)

    Google Scholar 

  16. Mias, G.I., Yusufaly, T., Roushangar, R., Brooks, L.R., Singh, V.V., Christou, C.: Mathiomica: An integrative platform for dynamic omics. Sci. Rep. 6, 37–237 (2016)

    Google Scholar 

  17. Scargle, J.: Studies in astronomical time series analysis. ii-statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982)

    Google Scholar 

  18. Scargle, J.: Studies in astronomical time series analysis. iii-fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data. Astrophys. J. 343, 874–887 (1989)

    Google Scholar 

  19. The UniProt Consortium: Uniprot: the universal protein knowledgebase. Nucl. Acids Res. 45(D1), D158–D169 (2017)

    Google Scholar 

  20. UniProt, C.: Uniprot: a hub for protein information. Nucl. Acids Res. 43(Database issue), D204–12 (2015)

    Google Scholar 

  21. Van Dongen, H.P., Ruf, T., Olofsen, E., VanHartevelt, J.H., Kruyt, E.W.: Analysis of problematic time series with the lomb-scargle method, a reply to ’emphasizing difficulties in the detection of rhythms with lomb-scargle periodograms’. Biol. Rhythm Res. 32(3), 347–54 (2001)

    Google Scholar 

  22. Wolfram Alpha LLC: Wolfram\(\mid \)Alpha (2017). Accessed Nov 2017

    Google Scholar 

  23. Wolfram Research, Inc.: Mathematica, Version 11.2. Champaign, IL (2017)

    Google Scholar 

  24. Zhao, W., Agyepong, K., Serpedin, E., Dougherty, E.R.: Detecting periodic genes from irregularly sampled gene expressions: A comparison study. EURASIP J. Bioinform. Syst. Biol. 2008 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Mias .

11.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 30874 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mias, G. (2018). Time Series Analysis. In: Mathematica for Bioinformatics. Springer, Cham. https://doi.org/10.1007/978-3-319-72377-8_11

Download citation

Publish with us

Policies and ethics