Advertisement

Molecular Ordering in Covalent Solids: A Simple Lattice Model

  • F. Siringo
Chapter

Abstract

Some aspects of molecular orientation in covalently-bonded molecular solids are discussed by reviewing a simple model for the molecular ordering of frustrated lattices. The model describes a peculiar phase transition from an isotropic high temperature phase to a low-dimensional anisotropic low-temperature state. The model was studied in the past by several methods ranging from mean-field up to more sophisticated variational Migdal–Kadanoff real space renormalization group and numerical Monte Carlo simulations.

References

  1. 1.
    F. Siringo, R. Pucci, N.H. March, High Press. Res. 2(2), 109 (1990).  https://doi.org/10.1080/08957959008201442
  2. 2.
    F. Siringo, R. Pucci, N.H. March, Phys. Rev. B 37, 2491 (1988).  https://doi.org/10.1103/PhysRevB.37.2491
  3. 3.
    F. Siringo, R. Pucci, N.H. March, Phys. Rev. B 38, 9567 (1988).  https://doi.org/10.1103/PhysRevB.38.9567
  4. 4.
    R. Pucci, F. Siringo, N.H. March, Phys. Rev. B 38, 9517 (1988).  https://doi.org/10.1103/PhysRevB.38.9517
  5. 5.
    M. Pasternak, J.N. Farrell, R.D. Taylor, Phys. Rev. Lett. 58, 575 (1987).  https://doi.org/10.1103/PhysRevLett.58.575
  6. 6.
    M. Pasternak, J.N. Farrell, R.D. Taylor, Solid State Commun. 61(7), 409 (1987).  https://doi.org/10.1016/0038-1098(87)90128-1
  7. 7.
    J. Obriot, F. Fondère, P. Marteau, M. Allavena, J. Chem. Phys. 79(1), 33 (1983).  https://doi.org/10.1063/1.445529
  8. 8.
    P.G. Johannsen, W. Helle, W.B. Holzapfel, J. Phys. Colloq. 45, 199 (1984).  https://doi.org/10.1051/jphyscol:1984836
  9. 9.
    F.A. Gorelli, M. Santoro, L. Ulivi, R. Bini, Physica B 265(1), 49 (1999).  https://doi.org/10.1016/S0921-4526(98)01314-3
  10. 10.
    R. Bini, M. Jordan, L. Ulivi, H.J. Jodl, J. Chem. Phys. 108(16), 6849 (1998).  https://doi.org/10.1063/1.476098
  11. 11.
    F. Siringo, Phys. Lett. A 226(6), 378 (1997).  https://doi.org/10.1016/S0375-9601(96)00959-0
  12. 12.
    F. Siringo, Int. J. Mod. Phys. B 11(18), 2183 (1997).  https://doi.org/10.1142/S021797929700112X
  13. 13.
    F. Siringo, Phys. Rev. E 62, 6026 (2000).  https://doi.org/10.1103/PhysRevE.62.6026
  14. 14.
    K. Mazzitello, J.L. Iguain, C.M. Aldao, H.O. Mártin, Phys. Rev. E 61, 2954 (2000).  https://doi.org/10.1103/PhysRevE.61.2954
  15. 15.
    V. Tozzini, N.H. March, M.P. Tosi, Phys. Chem. Liq. 37(2), 185 (1999).  https://doi.org/10.1080/00319109908045125
  16. 16.
    N.H. March, Physica B 265(1), 24 (1999).  https://doi.org/10.1016/S0921-4526(98)01311-8
  17. 17.
    J.A. Pople, F.E. Karasz, J. Phys. Chem. Solids 18(1), 28 (1961).  https://doi.org/10.1016/0022-3697(61)90080-4
  18. 18.
    C. Vega, E.P.A. Paras, P.A. Monson, J. Chem. Phys. 97(11), 8543 (1992).  https://doi.org/10.1063/1.463372
  19. 19.
    C. Itzykson, J.M. Drouffe, Statistical Field Theory (Cambridge University Press, Cambridge, 1989)Google Scholar
  20. 20.
    R.B. Potts, Math. Proc. Camb. Philos. Soc. 48(1), 106 (1952).  https://doi.org/10.1017/S0305004100027419
  21. 21.
    A.A. Migdal, Zh. Eksp. Teor. Fiz. 69(3), 810 (1975); J. Exp. Theor. Phys. (JETP) 42(3), 413 (1975)Google Scholar
  22. 22.
    A.A. Migdal, Zh. Eksp. Teor. Fiz. 69(4), 1457 (1975); J. Exp. Theor. Phys. (JETP) 42(4), 743 (1975)Google Scholar
  23. 23.
    L.P. Kadanoff, Ann. Phys. 100(1), 359 (1976).  https://doi.org/10.1016/0003-4916(76)90066-X
  24. 24.
    P.M. Stevenson, Phys. Rev. D 23, 2916 (1981).  https://doi.org/10.1103/PhysRevD.23.2916
  25. 25.
    F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982).  https://doi.org/10.1103/RevModPhys.54.235
  26. 26.
    W. Janke, R. Villanova, Nucl. Phys. B 489(3), 679 (1997).  https://doi.org/10.1016/S0550-3213(96)00710-9

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica e AstronomiaUniversità di Catania, and INFN Sezione di CataniaCataniaItaly

Personalised recommendations