Advertisement

Silicene and Germanene as Prospective Playgrounds for Room Temperature Superconductivity

  • G. Baskaran
Chapter

Abstract

Combining theory and certain striking phenomenology, we suggest that silicene and germanene are elemental Mott insulators and abode of doping induced high-\(T_c\) superconductivity. In our theory, a three-fold reduction in \(\pi \)-\(\pi ^*\) bandwidth in silicene, in comparison to graphene, and short range Coulomb interactions enable Mott localization. Recent experimental results are invoked to provide support for our Mott insulator model: (i) a significant \(\pi \)-band narrowing, in silicene on ZrB\(_2\) seen in ARPES, (ii) a superconducting gap appearing below 35 K with a large \(2\varDelta /k_{\mathrm B}T_c\sim 20\) in silicene on Ag, (iii) emergence of electron like pockets at M points, on electron doping by Na adsorbent, (iv) certain coherent quantum oscillation like features exhibited by silicene transistor at room temperatures, and (v) absence of Landau level splitting up to 7 T, and (vi) superstructures, not common in graphene, but ubiquitous in silicene. A synthesis of the above results using theory of Mott insulator, with and without doping, is attempted. We surmise that if competing orders are taken care of and optimal doping achieved, superconductivity in silicene and germanene could reach room temperature scales; our estimates of model parameters, t and \(J \sim 1\) eV, are encouragingly high, compared to cuprates.

Notes

Acknowledgements

I thank Professor Yamada-Takamura for giving permission to have a figure redrawn from [15]; Dr. Ayan Datta for a discussion; Dr. Kehui Wu and colleagues for informative discussions at the Silicene meeting in Beijing, 2014. I thank Science and Engineering Research Board (SERB), Government of India for the SERB Distinguished Fellowship. Additional support was provided by the Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science.

References

  1. 1.
    A. Grassi, G.M. Lombardo, R. Pucci, G.G.N. Angilella, F. Bartha, N.H. March, Chem. Phys. 297(1), 13 (2004).  https://doi.org/10.1016/j.chemphys.2003.10.001
  2. 2.
    N.H. March, A. Rubio, J. Nanomater. 2011, 932350 (2011).  https://doi.org/10.1155/2011/932350
  3. 3.
    G. Forte, A. Grassi, G.M. Lombardo, R. Pucci, G.G.N. Angilella, in Many-body approaches at different scales: a tribute to Norman H. March on the occasion of his 90th birthday, ed. by G.G.N. Angilella, C. Amovilli (Springer, New York, 2018), Chap. 19, p. 219. (This volume).  https://doi.org/10.1007/978-3-319-72374-7_19
  4. 4.
    G. Baskaran, Silicene and germanene as prospective playgrounds for room temperature superconductivity (2013), arXiv:1309.2242 [cond-mat.str-el]
  5. 5.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005).  https://doi.org/10.1038/nature04233
  6. 6.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183 (2007).  https://doi.org/10.1038/nmat1849
  7. 7.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81(1), 109 (2009).  https://doi.org/10.1103/RevModPhys.81.109
  8. 8.
    K. Takeda, K. Shiraishi, Phys. Rev. B 50, 14916 (1994).  https://doi.org/10.1103/PhysRevB.50.14916
  9. 9.
    G.G. Guzmán-Verri, L.C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007).  https://doi.org/10.1103/PhysRevB.76.075131
  10. 10.
    S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009).  https://doi.org/10.1103/PhysRevLett.102.236804
  11. 11.
    A. Kara, H. Enriquez, A.P. Seitsonen, L.C. Lew Yan Voon, S. Vizzini, B. Aufray, H. Oughaddou, Surf. Sci. Rep. 67(1) (2012).  https://doi.org/10.1016/j.surfrep.2011.10.001
  12. 12.
    P. De Padova, C. Quaresima, C. Ottaviani, P.M. Sheverdyaeva, P. Moras, C. Carbone, D. Topwal, B. Olivieri, A. Kara, H. Oughaddou, B. Aufray, G. Le Lay, Appl. Phys. Lett. 96(26), 261905 (2010).  https://doi.org/10.1063/1.3459143
  13. 13.
    P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012).  https://doi.org/10.1103/PhysRevLett.108.155501
  14. 14.
    L. Chen, C.C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, K. Wu, Phys. Rev. Lett. 109, 056804 (2012).  https://doi.org/10.1103/PhysRevLett.109.056804
  15. 15.
    A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura, Phys. Rev. Lett. 108, 245501 (2012).  https://doi.org/10.1103/PhysRevLett.108.245501
  16. 16.
    L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W.A. Hofer, H.J. Gao, Nano Lett. 13(2), 685 (2013).  https://doi.org/10.1021/nl304347w
  17. 17.
    L. Chen, B. Feng, K. Wu, Appl. Phys. Lett. 102(8), 081602 (2013).  https://doi.org/10.1063/1.4793998
  18. 18.
    C.L. Lin, R. Arafune, K. Kawahara, M. Kanno, N. Tsukahara, E. Minamitani, Y. Kim, M. Kawai, N. Takagi, Phys. Rev. Lett. 110, 076801 (2013).  https://doi.org/10.1103/PhysRevLett.110.076801
  19. 19.
    R. Friedlein, A. Fleurence, J.T. Sadowski, Y. Yamada-Takamura, Appl. Phys. Lett. 102(22), 221603 (2013).  https://doi.org/10.1063/1.4808214
  20. 20.
    L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Nat. Nanotechnol. 10(3), 227 (2015).  https://doi.org/10.1038/nnano.2014.325
  21. 21.
    G. Le Lay, Nat. Nanotechnol. 10(3), 202 (2015), News and Views.  https://doi.org/10.1038/nnano.2015.10
  22. 22.
    L. Li, S. Lu, J. Pan, Z. Qin, Y.q. Wang, Y. Wang, G. Cao, S. Du, H. Gao, Adv. Mat. 26(28), 4820 (2014).  https://doi.org/10.1002/adma.201400909
  23. 23.
    P. Bampoulis, L. Zhang, A. Safaei, R. van Gastel, B. Poelsema, H. Zandvliet, J. Phys. Cond. Matt. 26(44), 442001 (2014).  https://doi.org/10.1088/0953-8984/26/44/442001
  24. 24.
    M. Derivaz, D. Dentel, R. Stephan, M.C. Hanf, A. Mehdaoui, P. Sonnet, C. Pirri, Nano Lett. 15(4), 2510 (2015).  https://doi.org/10.1021/acs.nanolett.5b00085
  25. 25.
    A. Acun, L. Zhang, P. Bampoulis, M. Farmanbar, A. van Houselt, A.N. Rudenko, M. Lingenfelder, G. Brocks, B. Poelsema, M.I. Katsnelson, H.J.W. Zandvliet, J. Phys. Cond. Matt. 27(44), 443002 (2015).  https://doi.org/10.1088/0953-8984/27/44/443002
  26. 26.
    F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S. Zhang, J. Jia, Nat. Mater. 14(10), 1020 (2015), Article.  https://doi.org/10.1038/nmat4384
  27. 27.
    M.E. Dávila, G. Le Lay, Sci. Rep. 6, 20714 (2016).  https://doi.org/10.1038/srep20714
  28. 28.
    J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986).  https://doi.org/10.1007/BF01303701
  29. 29.
    P.W. Anderson, Science 235, 1196 (1987).  https://doi.org/10.1126/science.235.4793.1196
  30. 30.
    G. Baskaran, Z. Zou, P.W. Anderson, Solid State Commun. 63(11), 973 (1987).  https://doi.org/10.1016/0038-1098(87)90642-9
  31. 31.
    G. Baskaran, P.W. Anderson, Phys. Rev. B 37, 580 (1988).  https://doi.org/10.1103/PhysRevB.37.580
  32. 32.
    G. Baskaran, Iran. J. Phys. Res. 6(3), 234 (2006)MathSciNetGoogle Scholar
  33. 33.
    X. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, Oxford, 2007)CrossRefGoogle Scholar
  34. 34.
    Z.Y. Meng, T.C. Lang, S. Wessel, F.F. Assaad, A. Muramatsu, Nature 464(7290), 847 (2010).  https://doi.org/10.1038/nature08942
  35. 35.
    S. Sorella, E. Tosatti, Europhys. Lett. 19(8), 699 (1992).  https://doi.org/10.1209/0295-5075/19/8/007
  36. 36.
    S. Sorella, Y. Otsuka, S. Yunoki, Sci. Rep. 2, 992 (2012).  https://doi.org/10.1038/srep00992
  37. 37.
    S.R. Hassan, D. Sénéchal, Phys. Rev. Lett. 110, 096402 (2013).  https://doi.org/10.1103/PhysRevLett.110.096402
  38. 38.
    M. Schüler, M. Rösner, T.O. Wehling, A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. Lett. 111, 036601 (2013).  https://doi.org/10.1103/PhysRevLett.111.036601
  39. 39.
    E.F. Sheka, May silicene exist? (2009), arXiv:0901.3663 [cond-mat.mtrl-sci]
  40. 40.
    E.F. Sheka, Int. J. Quantum Chem. 113(4), 612 (2013).  https://doi.org/10.1002/qua.24081
  41. 41.
    R. Hoffmann, Ang. Chemie (Int. Ed.) 52(1), 93 (2013).  https://doi.org/10.1002/anie.201206678
  42. 42.
    D. Jose, A. Datta, J. Phys. Chem. C 116(46), 24639 (2012).  https://doi.org/10.1021/jp3084716
  43. 43.
    R. Vidya, G. Baskaran (2017). arXiv:1709.04664
  44. 44.
    G. Baskaran, Phys. Rev. B 65, 212505 (2002).  https://doi.org/10.1103/PhysRevB.65.212505
  45. 45.
    G. Baskaran, S.A. Jafari, Phys. Rev. Lett. 89, 016402 (2002).  https://doi.org/10.1103/PhysRevLett.89.016402
  46. 46.
    S. Pathak, V.B. Shenoy, G. Baskaran, Phys. Rev. B 81, 085431 (2010).  https://doi.org/10.1103/PhysRevB.81.085431
  47. 47.
    G. Baskaran, Pramana 73(1), 61 (2009).  https://doi.org/10.1007/s12043-009-0094-8
  48. 48.
    D.A. Clabo Jr., H.F. Schaefer III, J. Chem. Phys. 84(3), 1664 (1986).  https://doi.org/10.1063/1.450462
  49. 49.
    Y. Wang, H. Cheng, Phys. Rev. B 87, 245430 (2013).  https://doi.org/10.1103/PhysRevB.87.245430
  50. 50.
    Z. Guo, S. Furuya, J. Iwata, A. Oshiyama, J. Phys. Soc. Jpn. 82(6), 063714 (2013).  https://doi.org/10.7566/JPSJ.82.063714
  51. 51.
    S. Cahangirov, M. Audiffred, P. Tang, A. Iacomino, W. Duan, G. Merino, A. Rubio, Phys. Rev. B 88, 035432 (2013).  https://doi.org/10.1103/PhysRevB.88.035432
  52. 52.
    Y. Feng, D. Liu, B. Feng, X. Liu, L. Zhao, Z. Xie, Y. Liu, A. Liang, C. Hu, Y. Hu, S. He, G. Liu, J. Zhang, C. Chen, Z. Xu, L. Chen, K. Wu, Y.T. Liu, H. Lin, Z.Q. Huang, C.H. Hsu, F.C. Chuang, A. Bansil, X.J. Zhou, Proc. Natnl. Acad. Sci. (USA) 113(51), 14656 (2016).  https://doi.org/10.1073/pnas.1613434114, arXiv:1503.06278 [cond-mat.mtrl-sci]
  53. 53.
    C.L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi, M. Kawai, Appl. Phys. Express 5(4), 045802 (2012).  https://doi.org/10.1143/APEX.5.045802
  54. 54.
    Z. Majzik, M. Rachid Tchalala, M. Švec, P. Hapala, H. Enriquez, A. Kara, A.J. Mayne, G. Dujardin, P. Jelínek, H. Oughaddou, J. Phys. Cond. Matt. 25(22), 225301 (2013).  https://doi.org/10.1088/0953-8984/25/22/225301
  55. 55.
    L. Chen, H. Li, B. Feng, Z. Ding, J. Qiu, P. Cheng, K. Wu, S. Meng, Phys. Rev. Lett. 110, 085504 (2013).  https://doi.org/10.1103/PhysRevLett.110.085504
  56. 56.
    T. Tohyama, S. Maekawa, Supercond. Sci. Tech. 13(4), R17 (2000).  https://doi.org/10.1088/0953-2048/13/4/201
  57. 57.
    B.O. Wells, Z.X. Shen, A. Matsuura, D.M. King, M.A. Kastner, M. Greven, R.J. Birgeneau, Phys. Rev. Lett. 74, 964 (1995).  https://doi.org/10.1103/PhysRevLett.74.964
  58. 58.
    T.C. Choy, B.A. McKinnon, Phys. Rev. B 52, 14539 (1995).  https://doi.org/10.1103/PhysRevB.52.14539
  59. 59.
    A.M. Black-Schaffer, S. Doniach, Phys. Rev. B 75, 134512 (2007).  https://doi.org/10.1103/PhysRevB.75.134512
  60. 60.
    C. Honerkamp, Phys. Rev. Lett. 100, 146404 (2008).  https://doi.org/10.1103/PhysRevLett.100.146404
  61. 61.
    W.S. Wang, Y.Y. Xiang, Q.H. Wang, F. Wang, F. Yang, D.H. Lee, Phys. Rev. B 85, 035414 (2012).  https://doi.org/10.1103/PhysRevB.85.035414
  62. 62.
    M.L. Kiesel, C. Platt, W. Hanke, D.A. Abanin, R. Thomale, Phys. Rev. B 86, 020507 (2012).  https://doi.org/10.1103/PhysRevB.86.020507
  63. 63.
    R. Nandkishore, L.S. Levitov, A.V. Chubukov, Nat. Phys. 8(2), 158 (2012).  https://doi.org/10.1038/nphys2208
  64. 64.
    M.M. Scherer, S. Uebelacker, C. Honerkamp, Phys. Rev. B 85, 235408 (2012).  https://doi.org/10.1103/PhysRevB.85.235408
  65. 65.
    J. Vučičević, M.O. Goerbig, M.V. Milovanović, Phys. Rev. B 86, 214505 (2012).  https://doi.org/10.1103/PhysRevB.86.214505
  66. 66.
    Z.C. Gu, H.C. Jiang, D.N. Sheng, H. Yao, L. Balents, X.G. Wen, Phys. Rev. B 88, 155112 (2013).  https://doi.org/10.1103/PhysRevB.88.155112
  67. 67.
    T. Li, Europhys. Lett. 97(3), 37001 (2012).  https://doi.org/10.1209/0295-5075/97/37001
  68. 68.
    G. Baskaran (2017). (Unpublished)Google Scholar
  69. 69.
    F. Liu, C.C. Liu, K. Wu, F. Yang, Y. Yao, Phys. Rev. Lett. 111, 066804 (2013).  https://doi.org/10.1103/PhysRevLett.111.066804
  70. 70.
    W. Wan, Y. Ge, F. Yang, Y. Yao, Europhys. Lett. 104(3), 36001 (2013).  https://doi.org/10.1209/0295-5075/104/36001
  71. 71.
    C.C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 84, 195430 (2011).  https://doi.org/10.1103/PhysRevB.84.195430
  72. 72.
    M. Ezawa, New J. Phys. 14(3), 033003 (2012).  https://doi.org/10.1088/1367-2630/14/3/033003
  73. 73.
    M. Ezawa, Y. Tanaka, N. Nagaosa, Sci. Rep. 3, 2790 (2013).  https://doi.org/10.1038/srep02790

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Institute of Mathematical SciencesChennaiIndia
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations