Skip to main content

Silicene and Germanene as Prospective Playgrounds for Room Temperature Superconductivity

  • Chapter
  • First Online:

Abstract

Combining theory and certain striking phenomenology, we suggest that silicene and germanene are elemental Mott insulators and abode of doping induced high-\(T_c\) superconductivity. In our theory, a three-fold reduction in \(\pi \)-\(\pi ^*\) bandwidth in silicene, in comparison to graphene, and short range Coulomb interactions enable Mott localization. Recent experimental results are invoked to provide support for our Mott insulator model: (i) a significant \(\pi \)-band narrowing, in silicene on ZrB\(_2\) seen in ARPES, (ii) a superconducting gap appearing below 35 K with a large \(2\varDelta /k_{\mathrm B}T_c\sim 20\) in silicene on Ag, (iii) emergence of electron like pockets at M points, on electron doping by Na adsorbent, (iv) certain coherent quantum oscillation like features exhibited by silicene transistor at room temperatures, and (v) absence of Landau level splitting up to 7 T, and (vi) superstructures, not common in graphene, but ubiquitous in silicene. A synthesis of the above results using theory of Mott insulator, with and without doping, is attempted. We surmise that if competing orders are taken care of and optimal doping achieved, superconductivity in silicene and germanene could reach room temperature scales; our estimates of model parameters, t and \(J \sim 1\) eV, are encouragingly high, compared to cuprates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Grassi, G.M. Lombardo, R. Pucci, G.G.N. Angilella, F. Bartha, N.H. March, Chem. Phys. 297(1), 13 (2004). https://doi.org/10.1016/j.chemphys.2003.10.001

  2. N.H. March, A. Rubio, J. Nanomater. 2011, 932350 (2011). https://doi.org/10.1155/2011/932350

  3. G. Forte, A. Grassi, G.M. Lombardo, R. Pucci, G.G.N. Angilella, in Many-body approaches at different scales: a tribute to Norman H. March on the occasion of his 90th birthday, ed. by G.G.N. Angilella, C. Amovilli (Springer, New York, 2018), Chap. 19, p. 219. (This volume). https://doi.org/10.1007/978-3-319-72374-7_19

  4. G. Baskaran, Silicene and germanene as prospective playgrounds for room temperature superconductivity (2013), arXiv:1309.2242 [cond-mat.str-el]

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005). https://doi.org/10.1038/nature04233

  6. A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183 (2007). https://doi.org/10.1038/nmat1849

  7. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81(1), 109 (2009). https://doi.org/10.1103/RevModPhys.81.109

  8. K. Takeda, K. Shiraishi, Phys. Rev. B 50, 14916 (1994). https://doi.org/10.1103/PhysRevB.50.14916

  9. G.G. Guzmán-Verri, L.C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007). https://doi.org/10.1103/PhysRevB.76.075131

  10. S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009). https://doi.org/10.1103/PhysRevLett.102.236804

  11. A. Kara, H. Enriquez, A.P. Seitsonen, L.C. Lew Yan Voon, S. Vizzini, B. Aufray, H. Oughaddou, Surf. Sci. Rep. 67(1) (2012). https://doi.org/10.1016/j.surfrep.2011.10.001

  12. P. De Padova, C. Quaresima, C. Ottaviani, P.M. Sheverdyaeva, P. Moras, C. Carbone, D. Topwal, B. Olivieri, A. Kara, H. Oughaddou, B. Aufray, G. Le Lay, Appl. Phys. Lett. 96(26), 261905 (2010). https://doi.org/10.1063/1.3459143

  13. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012). https://doi.org/10.1103/PhysRevLett.108.155501

  14. L. Chen, C.C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, K. Wu, Phys. Rev. Lett. 109, 056804 (2012). https://doi.org/10.1103/PhysRevLett.109.056804

  15. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura, Phys. Rev. Lett. 108, 245501 (2012). https://doi.org/10.1103/PhysRevLett.108.245501

  16. L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W.A. Hofer, H.J. Gao, Nano Lett. 13(2), 685 (2013). https://doi.org/10.1021/nl304347w

  17. L. Chen, B. Feng, K. Wu, Appl. Phys. Lett. 102(8), 081602 (2013). https://doi.org/10.1063/1.4793998

  18. C.L. Lin, R. Arafune, K. Kawahara, M. Kanno, N. Tsukahara, E. Minamitani, Y. Kim, M. Kawai, N. Takagi, Phys. Rev. Lett. 110, 076801 (2013). https://doi.org/10.1103/PhysRevLett.110.076801

  19. R. Friedlein, A. Fleurence, J.T. Sadowski, Y. Yamada-Takamura, Appl. Phys. Lett. 102(22), 221603 (2013). https://doi.org/10.1063/1.4808214

  20. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Nat. Nanotechnol. 10(3), 227 (2015). https://doi.org/10.1038/nnano.2014.325

  21. G. Le Lay, Nat. Nanotechnol. 10(3), 202 (2015), News and Views. https://doi.org/10.1038/nnano.2015.10

  22. L. Li, S. Lu, J. Pan, Z. Qin, Y.q. Wang, Y. Wang, G. Cao, S. Du, H. Gao, Adv. Mat. 26(28), 4820 (2014). https://doi.org/10.1002/adma.201400909

  23. P. Bampoulis, L. Zhang, A. Safaei, R. van Gastel, B. Poelsema, H. Zandvliet, J. Phys. Cond. Matt. 26(44), 442001 (2014). https://doi.org/10.1088/0953-8984/26/44/442001

  24. M. Derivaz, D. Dentel, R. Stephan, M.C. Hanf, A. Mehdaoui, P. Sonnet, C. Pirri, Nano Lett. 15(4), 2510 (2015). https://doi.org/10.1021/acs.nanolett.5b00085

  25. A. Acun, L. Zhang, P. Bampoulis, M. Farmanbar, A. van Houselt, A.N. Rudenko, M. Lingenfelder, G. Brocks, B. Poelsema, M.I. Katsnelson, H.J.W. Zandvliet, J. Phys. Cond. Matt. 27(44), 443002 (2015). https://doi.org/10.1088/0953-8984/27/44/443002

  26. F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S. Zhang, J. Jia, Nat. Mater. 14(10), 1020 (2015), Article. https://doi.org/10.1038/nmat4384

  27. M.E. Dávila, G. Le Lay, Sci. Rep. 6, 20714 (2016). https://doi.org/10.1038/srep20714

  28. J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986). https://doi.org/10.1007/BF01303701

  29. P.W. Anderson, Science 235, 1196 (1987). https://doi.org/10.1126/science.235.4793.1196

  30. G. Baskaran, Z. Zou, P.W. Anderson, Solid State Commun. 63(11), 973 (1987). https://doi.org/10.1016/0038-1098(87)90642-9

  31. G. Baskaran, P.W. Anderson, Phys. Rev. B 37, 580 (1988). https://doi.org/10.1103/PhysRevB.37.580

  32. G. Baskaran, Iran. J. Phys. Res. 6(3), 234 (2006)

    MathSciNet  Google Scholar 

  33. X. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, Oxford, 2007)

    Book  Google Scholar 

  34. Z.Y. Meng, T.C. Lang, S. Wessel, F.F. Assaad, A. Muramatsu, Nature 464(7290), 847 (2010). https://doi.org/10.1038/nature08942

  35. S. Sorella, E. Tosatti, Europhys. Lett. 19(8), 699 (1992). https://doi.org/10.1209/0295-5075/19/8/007

  36. S. Sorella, Y. Otsuka, S. Yunoki, Sci. Rep. 2, 992 (2012). https://doi.org/10.1038/srep00992

  37. S.R. Hassan, D. Sénéchal, Phys. Rev. Lett. 110, 096402 (2013). https://doi.org/10.1103/PhysRevLett.110.096402

  38. M. Schüler, M. Rösner, T.O. Wehling, A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. Lett. 111, 036601 (2013). https://doi.org/10.1103/PhysRevLett.111.036601

  39. E.F. Sheka, May silicene exist? (2009), arXiv:0901.3663 [cond-mat.mtrl-sci]

  40. E.F. Sheka, Int. J. Quantum Chem. 113(4), 612 (2013). https://doi.org/10.1002/qua.24081

  41. R. Hoffmann, Ang. Chemie (Int. Ed.) 52(1), 93 (2013). https://doi.org/10.1002/anie.201206678

  42. D. Jose, A. Datta, J. Phys. Chem. C 116(46), 24639 (2012). https://doi.org/10.1021/jp3084716

  43. R. Vidya, G. Baskaran (2017). arXiv:1709.04664

  44. G. Baskaran, Phys. Rev. B 65, 212505 (2002). https://doi.org/10.1103/PhysRevB.65.212505

  45. G. Baskaran, S.A. Jafari, Phys. Rev. Lett. 89, 016402 (2002). https://doi.org/10.1103/PhysRevLett.89.016402

  46. S. Pathak, V.B. Shenoy, G. Baskaran, Phys. Rev. B 81, 085431 (2010). https://doi.org/10.1103/PhysRevB.81.085431

  47. G. Baskaran, Pramana 73(1), 61 (2009). https://doi.org/10.1007/s12043-009-0094-8

  48. D.A. Clabo Jr., H.F. Schaefer III, J. Chem. Phys. 84(3), 1664 (1986). https://doi.org/10.1063/1.450462

  49. Y. Wang, H. Cheng, Phys. Rev. B 87, 245430 (2013). https://doi.org/10.1103/PhysRevB.87.245430

  50. Z. Guo, S. Furuya, J. Iwata, A. Oshiyama, J. Phys. Soc. Jpn. 82(6), 063714 (2013). https://doi.org/10.7566/JPSJ.82.063714

  51. S. Cahangirov, M. Audiffred, P. Tang, A. Iacomino, W. Duan, G. Merino, A. Rubio, Phys. Rev. B 88, 035432 (2013). https://doi.org/10.1103/PhysRevB.88.035432

  52. Y. Feng, D. Liu, B. Feng, X. Liu, L. Zhao, Z. Xie, Y. Liu, A. Liang, C. Hu, Y. Hu, S. He, G. Liu, J. Zhang, C. Chen, Z. Xu, L. Chen, K. Wu, Y.T. Liu, H. Lin, Z.Q. Huang, C.H. Hsu, F.C. Chuang, A. Bansil, X.J. Zhou, Proc. Natnl. Acad. Sci. (USA) 113(51), 14656 (2016). https://doi.org/10.1073/pnas.1613434114, arXiv:1503.06278 [cond-mat.mtrl-sci]

  53. C.L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi, M. Kawai, Appl. Phys. Express 5(4), 045802 (2012). https://doi.org/10.1143/APEX.5.045802

  54. Z. Majzik, M. Rachid Tchalala, M. Švec, P. Hapala, H. Enriquez, A. Kara, A.J. Mayne, G. Dujardin, P. Jelínek, H. Oughaddou, J. Phys. Cond. Matt. 25(22), 225301 (2013). https://doi.org/10.1088/0953-8984/25/22/225301

  55. L. Chen, H. Li, B. Feng, Z. Ding, J. Qiu, P. Cheng, K. Wu, S. Meng, Phys. Rev. Lett. 110, 085504 (2013). https://doi.org/10.1103/PhysRevLett.110.085504

  56. T. Tohyama, S. Maekawa, Supercond. Sci. Tech. 13(4), R17 (2000). https://doi.org/10.1088/0953-2048/13/4/201

  57. B.O. Wells, Z.X. Shen, A. Matsuura, D.M. King, M.A. Kastner, M. Greven, R.J. Birgeneau, Phys. Rev. Lett. 74, 964 (1995). https://doi.org/10.1103/PhysRevLett.74.964

  58. T.C. Choy, B.A. McKinnon, Phys. Rev. B 52, 14539 (1995). https://doi.org/10.1103/PhysRevB.52.14539

  59. A.M. Black-Schaffer, S. Doniach, Phys. Rev. B 75, 134512 (2007). https://doi.org/10.1103/PhysRevB.75.134512

  60. C. Honerkamp, Phys. Rev. Lett. 100, 146404 (2008). https://doi.org/10.1103/PhysRevLett.100.146404

  61. W.S. Wang, Y.Y. Xiang, Q.H. Wang, F. Wang, F. Yang, D.H. Lee, Phys. Rev. B 85, 035414 (2012). https://doi.org/10.1103/PhysRevB.85.035414

  62. M.L. Kiesel, C. Platt, W. Hanke, D.A. Abanin, R. Thomale, Phys. Rev. B 86, 020507 (2012). https://doi.org/10.1103/PhysRevB.86.020507

  63. R. Nandkishore, L.S. Levitov, A.V. Chubukov, Nat. Phys. 8(2), 158 (2012). https://doi.org/10.1038/nphys2208

  64. M.M. Scherer, S. Uebelacker, C. Honerkamp, Phys. Rev. B 85, 235408 (2012). https://doi.org/10.1103/PhysRevB.85.235408

  65. J. Vučičević, M.O. Goerbig, M.V. Milovanović, Phys. Rev. B 86, 214505 (2012). https://doi.org/10.1103/PhysRevB.86.214505

  66. Z.C. Gu, H.C. Jiang, D.N. Sheng, H. Yao, L. Balents, X.G. Wen, Phys. Rev. B 88, 155112 (2013). https://doi.org/10.1103/PhysRevB.88.155112

  67. T. Li, Europhys. Lett. 97(3), 37001 (2012). https://doi.org/10.1209/0295-5075/97/37001

  68. G. Baskaran (2017). (Unpublished)

    Google Scholar 

  69. F. Liu, C.C. Liu, K. Wu, F. Yang, Y. Yao, Phys. Rev. Lett. 111, 066804 (2013). https://doi.org/10.1103/PhysRevLett.111.066804

  70. W. Wan, Y. Ge, F. Yang, Y. Yao, Europhys. Lett. 104(3), 36001 (2013). https://doi.org/10.1209/0295-5075/104/36001

  71. C.C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 84, 195430 (2011). https://doi.org/10.1103/PhysRevB.84.195430

  72. M. Ezawa, New J. Phys. 14(3), 033003 (2012). https://doi.org/10.1088/1367-2630/14/3/033003

  73. M. Ezawa, Y. Tanaka, N. Nagaosa, Sci. Rep. 3, 2790 (2013). https://doi.org/10.1038/srep02790

Download references

Acknowledgements

I thank Professor Yamada-Takamura for giving permission to have a figure redrawn from [15]; Dr. Ayan Datta for a discussion; Dr. Kehui Wu and colleagues for informative discussions at the Silicene meeting in Beijing, 2014. I thank Science and Engineering Research Board (SERB), Government of India for the SERB Distinguished Fellowship. Additional support was provided by the Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Baskaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baskaran, G. (2018). Silicene and Germanene as Prospective Playgrounds for Room Temperature Superconductivity. In: Angilella, G., Amovilli, C. (eds) Many-body Approaches at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-72374-7_5

Download citation

Publish with us

Policies and ethics