Advertisement

Spacetime as a Quantum Many-Body System

  • D. Oriti
Chapter

Abstract

Quantum gravity has become a fertile interface between gravitational physics and quantum many-body physics, with its double goal of identifying the microscopic constituents of the universe and their fundamental dynamics, and of understanding their collective properties and how spacetime and geometry themselves emerge from them at macroscopic scales. In this brief contribution, we outline the problem of quantum gravity from this emergent spacetime perspective, and discuss some examples in which ideas and methods from quantum many-body systems have found a central role in quantum gravity research.

References

  1. 1.
    S. Carlip, D.W. Chiou, W.T. Ni, R. Woodard, Int. J. Mod. Phys. D 24(11), 1530028 (2015).  https://doi.org/10.1142/S0218271815300281
  2. 2.
    C. Rovelli, in Proceedings of the 9th Marcel Grossmann Meeting (MGIX MM): On Recent Developments, in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories, ed. by V.G. Gurzadyan, R.T. Jantzen, R. Ruffini (World Scientific, Singapore, 2000), pp. 742–768Google Scholar
  3. 3.
    D. Rickles, in Integrating History and Philosophy of Science: Problems and Prospects (Boston Studies in the Philosophy and History of Science), ed. by S. Mauskopf, T. Schmaltz (Springer, New York, 2012), chap. 11, pp. 163–199. ISBN 9789400717442, 9789400717459.  https://doi.org/10.1007/978-94-007-1745-9
  4. 4.
    D. Oriti (ed.), Approaches to Quantum Gravity: Towards a New Understanding of Space, Time and Matter (Cambridge University Press, Cambridge, 2009)zbMATHGoogle Scholar
  5. 5.
    A. Ashtekar, J. Lewandowski, Class. Quantum Gravity 21(15), R53 (2004).  https://doi.org/10.1088/0264-9381/21/15/R01
  6. 6.
    C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004). ISBN 9780521837330CrossRefzbMATHGoogle Scholar
  7. 7.
    A. Ashtekar, J. Pullin, in Loop Quantum Gravity: the First 30 Years [72], chap. 1. ISBN9789813209923.  https://doi.org/10.1142/10445
  8. 8.
    N. Bodendorfer (2016), arXiv:1607.05129 [gr-qc]
  9. 9.
    J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll, Phys. Rep. 519(4), 127 (2012).  https://doi.org/10.1016/j.physrep.2012.03.007
  10. 10.
    A. Perez, Liv. Rev. Rel. 16(1), 3 (2013).  https://doi.org/10.12942/lrr-2013-3
  11. 11.
    D. Oriti, in Foundations of Space and Time: Reflections on Quantum Gravity, ed. by J. Murugan, A. Weltman, G.F.R. Ellis (Cambridge University Press, Cambridge, 2012), chap. 12. ISBN 9780521114400Google Scholar
  12. 12.
    T. Krajewski, PoS QGQGS2011, 005 (2011), Proceedings of the 3rd Quantum Gravity and Quantum Geometry School (Zakopane, Poland, February 28–March 13, 2011), arXiv:1210.6257 [gr-qc]
  13. 13.
    A. Baratin, D. Oriti, J. Phys.: Conf. Ser. 360(1), 012002 (2012).  https://doi.org/10.1088/1742-6596/360/1/012002
  14. 14.
    D. Oriti, in Ashtekar and Pullin [72], chap. 5. ISBN9789813209923.  https://doi.org/10.1142/10445
  15. 15.
    F. Dowker, Gen. Relat. Gravit. 45(9), 1651 (2013).  https://doi.org/10.1007/s10714-013-1569-y
  16. 16.
    F. Lizzi, in Proceedings of the Workshop on Geometry, Topology, QFT and Cosmology, Paris, May 28–30,2008 (Observatoire de Paris, Paris, 2008), arXiv:0811.0268 [hep-th]
  17. 17.
    S. Majid, in Oriti, [4], chap. 24, p. 466. ISBN 9780521860451Google Scholar
  18. 18.
    M. Niedermaier, M. Reuter, Living Rev. Relativ. 9(1), 5 (2006).  https://doi.org/10.12942/lrr-2006-5
  19. 19.
    K.S. Stelle, in Quantum Gravity and Quantum Cosmology. Lecture Notes in Physics, vol. 863, ed. by G. Calcagni, L. Papantonopoulos, G. Siopsis, N. Tsamis (Springer, Berlin, 2013), pp. 3–30. ISBN 978-3-642-33036-0.  https://doi.org/10.1007/978-3-642-33036-0_1
  20. 20.
    M. Blau, S. Theisen, Gen. Relativ. Gravit. 41(4), 743 (2009).  https://doi.org/10.1007/s10714-008-0752-z
  21. 21.
    S. Carlip, Int. J. Mod. Phys. D 23(11), 1430023 (2014).  https://doi.org/10.1142/S0218271814300237
  22. 22.
    S.D. Mathur, Class. Quantum Gravity 26(22), 224001 (2009).  https://doi.org/10.1088/0264-9381/26/22/224001
  23. 23.
    G. Chirco, S. Liberati, Phys. Rev. D 81, 024016 (2010).  https://doi.org/10.1103/PhysRevD.81.024016
  24. 24.
    T. Padmanabhan, Curr. Sci. 109, 2236 (2015).  https://doi.org/10.18520/v109/i12/2236-2242
  25. 25.
    L. Freidel, M. Geiller, J. Ziprick, Class. Quantum Gravity 30(8), 085013 (2013).  https://doi.org/10.1088/0264-9381/30/8/085013
  26. 26.
    D. Oriti, Class. Quantum Gravity 33(8), 085005 (2016).  https://doi.org/10.1088/0264-9381/33/8/085005
  27. 27.
    N. Seiberg, in The Quantum Structure of Space and Time, ed. by D. Gross, M. Henneaux, A. Sevrin (World Scientific, Singapore, 2007), pp. 163–213. ISBN 9789812569523.  https://doi.org/10.1142/9789812706768_0005
  28. 28.
    O. Hohm, D. Lüst, B. Zwiebach, Fortschr. Phys. 61(10), 926 (2013).  https://doi.org/10.1002/prop.201300024
  29. 29.
    D. Oriti, Stud. Hist. Philos. Sci. B 46(2), 186 (2014)MathSciNetGoogle Scholar
  30. 30.
    K. Crowther, Appearing out of nowhere: the emergence of spacetime in quantum gravity. PhD thesis, University of Sydney (2014), arXiv:1410.0345 [physics.hist-ph]
  31. 31.
    C. Barceló, S. Liberati, M. Visser, Living Rev. Relativ. 8(1), 12 (2005).  https://doi.org/10.12942/lrr-2005-12
  32. 32.
    S. Finazzi, S. Liberati, L. Sindoni, in Proceedings of the 2nd Amazonian Symposium on Physics (2012), arXiv:1204.3039 [gr-qc]
  33. 33.
    G. Volovik, Ann. Phys. 14(1–3), 165 (2005).  https://doi.org/10.1002/andp.200410123
  34. 34.
    B.L. Hu, Int. J. Theor. Phys. 44(10), 1785 (2005).  https://doi.org/10.1007/s10773-005-8895-0
  35. 35.
    D. Oriti, PoS QG-Ph, 030 (2007), Proceedings of the Conference ‘From Quantum to Emergent Gravity: Theory and Phenomenology’ (Trieste, Italy, June 11–15 2007), arXiv:0710.3276 [gr-qc]
  36. 36.
    G.T. Horowitz, J. Polchinski, in Oriti [4], chap. 10, pp. 169–186. ISBN 9780521860451Google Scholar
  37. 37.
    J. de Boer, in Theoretical Physics to Face the Challenge of LHC. Lecture Notes of the Les Houches Summer School, vol. 97, ed. by L. Baulieu, K. Benakli, M.R. Douglas, B. Mansoulié, E. Rabinovici, L.F. Cugliandolo (Oxford University Press, Oxford, 2015), chap. 7. ISBN 9780198727965.  https://doi.org/10.1093/acprof:oso/9780198727965.003.0007
  38. 38.
    J. Zaanen, Y. Liu, Y. Sun, K. Schalm, Holographic Duality in Condensed Matter Physics (Cambridge University Press, Cambridge, 2015)CrossRefGoogle Scholar
  39. 39.
    N.H. March, G.G.N. Angilella, Exactly Solvable Models in Many-body Theory (World Scientific, Singapore, 2016)CrossRefGoogle Scholar
  40. 40.
    A. Kitaev, A simple model of quantum holography (2005). Talks at KITP, April 7 and May 27, 2015Google Scholar
  41. 41.
    R. Gurau, J.P. Ryan, SIGMA 8, 020 (2012), Contribution to the Special Issue on ‘Loop Quantum Gravity and Cosmology’, arXiv:1109.4812 [hep-th].  https://doi.org/10.3842/SIGMA.2012.020
  42. 42.
    R. Gurau, SIGMA 12, 094 (2016), Contribution to the Special Issue on ‘Tensor Models, Formalism and Applications’, arXiv:1609.06439 [hep-th].  https://doi.org/10.3842/SIGMA.2016.094
  43. 43.
    R. Gurau, SIGMA 12, 069 (2016), Contribution to the Special Issue on ‘Tensor Models, Formalism and Applications’, arXiv:1603.07278 [math-ph].  https://doi.org/10.3842/SIGMA.2016.069
  44. 44.
    V. Bonzom, L. Lionni, A. Tanasa, J. Math. Phys. 58(5), 052301 (2017).  https://doi.org/10.1063/1.4983562
  45. 45.
    M. Van Raamsdonk, in New Frontiers in Fields and Strings. Proceedings of the 2015 Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2015, Boulder, Colorado, 1–26 June 2015) (World Scientific, Singapore, 2016), chap. 5, pp. 297–351. arXiv:1609.00026 [hep-th].  https://doi.org/10.1142/9789813149441_0005
  46. 46.
    C. Cao, S.M. Carroll, S. Michalakis, Phys. Rev. D 95, 024031 (2017).  https://doi.org/10.1103/PhysRevD.95.024031
  47. 47.
    P. Hayden, S. Nezami, X.L. Qi, N. Thomas, M. Walter, Z. Yang, J. High Energy Phys. 2016(11), 9 (2016).  https://doi.org/10.1007/JHEP11(2016)009
  48. 48.
    M. Van Raamsdonk, Gen. Relativ. Gravit. 42(10), 2323 (2010), Reprinted as Ref. [73].  https://doi.org/10.1007/s10714-010-1034-0
  49. 49.
    E.R. Livine, D.R. Terno, Reconstructing quantum geometry from quantum information: area renormalization, coarse-graining and entanglement on spin networks (2006), arXiv:gr-qc/0603008
  50. 50.
    P.A. Höhn, J. Phys.: Conf. Ser. 880(1), 012014 (2017).  https://doi.org/10.1088/1742-6596/880/1/012014
  51. 51.
    G. Chirco, F.M. Mele, D. Oriti, P. Vitale, Fisher metric, geometric entanglement and spin networks (2017), arXiv:1703.05231 [gr-qc]
  52. 52.
    E.R. Livine, Intertwiner entanglement on spin networks (2017), arXiv:1709.08511 [gr-qc]
  53. 53.
    V. Bonzom, F. Costantino, E.R. Livine, Commun. Math. Phys. 344(2), 531 (2016).  https://doi.org/10.1007/s00220-015-2567-6
  54. 54.
    B. Bahr, B. Dittrich, F. Hellmann, W. Kaminski, Phys. Rev. D 87, 044048 (2013).  https://doi.org/10.1103/PhysRevD.87.044048
  55. 55.
    B. Dittrich, F.C. Eckert, M. Martin-Benito, New J. Phys. 14(3), 035008 (2012).  https://doi.org/10.1088/1367-2630/14/3/035008
  56. 56.
    B. Dittrich, S. Mizera, S. Steinhaus, New J. Phys. 18(5), 053009 (2016).  https://doi.org/10.1088/1367-2630/18/5/053009
  57. 57.
    C. Delcamp, B. Dittrich, Towards a phase diagram for spin foams (2016), arXiv:1612.04506 [gr-qc]
  58. 58.
    G. Chirco, D. Oriti, M. Zhang, Group field theory and tensor networks: towards a ryu-takayanagi formula in full quantum gravity (2017), arXiv:1701.01383 [gr-qc]
  59. 59.
    M. Han, L.Y. Hung, Phys. Rev. D 95, 024011 (2017).  https://doi.org/10.1103/PhysRevD.95.024011
  60. 60.
    S. Carrozza, D. Oriti, V. Rivasseau, Commun. Math. Phys. 330(2), 581 (2014).  https://doi.org/10.1007/s00220-014-1928-x
  61. 61.
    D. Benedetti, J.B. Geloun, D. Oriti, J. High Energy Phys. 2015(3), 84 (2015).  https://doi.org/10.1007/JHEP03(2015)084
  62. 62.
    S. Carrozza, V. Lahoche, Class. Quantum Gravity 34(11), 115004 (2017).  https://doi.org/10.1088/1361-6382/aa6d90
  63. 63.
    S. Carrozza, SIGMA 12, 070 (2016), Contribution to the special issue on ‘Tensor Models, Formalism and Applications’, arXiv:1603.01902 [gr-qc].  https://doi.org/10.3842/SIGMA.2016.070
  64. 64.
    S. Carrozza, V. Lahoche, D. Oriti, Phys. Rev. D 96, 066007 (2017).  https://doi.org/10.1103/PhysRevD.96.066007
  65. 65.
    S. Gielen, D. Oriti, L. Sindoni, Phys. Rev. Lett. 111, 031301 (2013).  https://doi.org/10.1103/PhysRevLett.111.031301
  66. 66.
    S. Gielen, D. Oriti, L. Sindoni, J. High Energy Phys. 2014(6), 13 (2014).  https://doi.org/10.1007/JHEP06(2014)013
  67. 67.
    S. Gielen, L. Sindoni, SIGMA 12, 082 (2016), Contribution to the Special Issue on ‘Tensor Models, Formalism and Applications’, arXiv:1602.08104 [gr-qc].  https://doi.org/10.3842/SIGMA.2016.082
  68. 68.
    D. Oriti, Comptes Rendus Physique 18(3), 235 (2017).  https://doi.org/10.1016/j.crhy.2017.02.003
  69. 69.
    D. Oriti, L. Sindoni, E. Wilson-Ewing, Class. Quantum Gravity 33(22), 224001 (2016).  https://doi.org/10.1088/0264-9381/33/22/224001
  70. 70.
    M. de Cesare, A.G.A. Pithis, M. Sakellariadou, Phys. Rev. D 94, 064051 (2016).  https://doi.org/10.1103/PhysRevD.94.064051
  71. 71.
    S. Gielen, D. Oriti, Cosmological perturbations from full quantum gravity (2017), arXiv:1709.01095 [gr-qc]
  72. 72.
    A. Ashtekar, J. Pullin (eds.), 100 Years of General Relativity, vol. 4 (World Scientific, Singapore, 2004). ISBN 9789813209923Google Scholar
  73. 73.
    M. Van Raamsdonk, Int. J. Mod. Phys. D 19(14), 2429 (2010), Reprint of Ref. [48].  https://doi.org/10.1142/S0218271810018529

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Max Planck Institute for Gravitational Physics (Albert Einstein Institute)Potsdam-GolmGermany

Personalised recommendations