Do Two Symmetry-Breaking Transitions in Photosynthetic Light Harvesting Complexes (PLHC) Form One, Two or More Kibble–Zurek (KZ) Topological Defect(s)?

Chapter

Abstract

Kibble (J Phys A: Math Gen, 9(8):1387, 1976) [1] and Zurek (Nature, 317(6037):505, 1985) [2] (KZ) proposed that rapid symmetry-breaking transitions in the hot, early universe could result in causally disconnected topological defects such as cosmic strings. This type of first order transition has analogues in certain second order transitions present in condensed matter such as liquid crystals, superfluids and charge density waves in terms of flux tubes or vortices. Recently, we discovered that Rhodopseudomonas acidophila’s Photosynthetic Light Harvesting Complex might have different types of coherent ground and excited states, suggesting that there are two different symmetry-breaking transitions. The B850 ground states comprise eight identical rings each containing 18 bacteriochlorophyll components, and each ring has undergone a Bose–Einstein phase transition to a charge density wave that lowers the energy. The excited state coherence results from polariton formation from the non-crossing of bosons, here excitons and photons, an extension of exciton theory (Knox, Theory of excitons. Academic Press, New York, 1963) [3]. The result is short-lived quasiparticles with very low mass that can form an unusual Bose–Einstein condensate (BEC). We suggest that the oriented, circular B850’s and enclosed single B875 create new cavity structure with some attributes of toroidal nanopillars (Fan et al., Nano Lett, 10(10):3823, 2010) [4], (Pelton and Bryant, Introduction to metal-nanoparticle plasmonics. Wiley, Hoboken, 2013) [5], (Vahala, Nature, 424(6950):839, 2003) [6]. Since both the ground and excited states should contain solitons, we envisage trARPES (time and angle resolved photoemission spectroscopy) in conjunction with a three-pulse probe with various appropriate time delays should be able to map both the KZ phase transitions and energy transfers as a function of light intensity and time in this complex at room temperature (Mihailovic et al., J Phys: Condens Matt, 25(40):404206, 2013) [7], (Rettig et al., Nat Comms, 7:10459, 2016) [8].

Notes

Acknowledgements

RHS is grateful to NHM for suggesting the KZ theory approach to analyzing the PLHC and for sharing his ideas for twenty-five years.

References

  1. 1.
    T.W.B. Kibble, J. Phys. A: Math. Gen. 9(8), 1387 (1976).  https://doi.org/10.1088/0305-4470/9/8/029
  2. 2.
    W.H. Zurek, Nature 317(6037), 505 (1985).  https://doi.org/10.1038/317505a0
  3. 3.
    R.S. Knox, Theory of Excitons (Academic Press, New York, 1963)Google Scholar
  4. 4.
    Z. Fan, R. Kapadia, P.W. Leu, X. Zhang, Y.L. Chueh, K. Takei, K. Yu, A. Jamshidi, A.A. Rathore, D.J. Ruebusch, M. Wu, A. Javey, Nano Lett. 10(10), 3823 (2010).  https://doi.org/10.1021/nl1010788
  5. 5.
    M. Pelton, G. Bryant, Introduction to Metal-Nanoparticle Plasmonics (Wiley, Hoboken, 2013)Google Scholar
  6. 6.
    K.J. Vahala, Nature 424(6950), 839 (2003).  https://doi.org/10.1038/nature01939
  7. 7.
    D. Mihailovic, T. Mertelj, V.V. Kabanov, S. Brazovskii, J. Phys.: Condens. Matt. 25(40), 404206 (2013).  https://doi.org/10.1088/0953-8984/25/40/404206
  8. 8.
    L. Rettig, R. Cortés, J.H. Chu, I.R. Fisher, F. Schmitt, R.G. Moore, Z.X. Shen, P.S. Kirchmann, M. Wolf, U. Bovensiepen, Nat. Comms. 7, 10459 (2016).  https://doi.org/10.1038/ncomms10459
  9. 9.
    G. McDermott, S.M. Prince, A.A. Freer, A.M. Hawthornthwaite-Lawless, M.Z. Papiz, R.J. Cogdell, N.W. Isaacs, Nature 374(6522), 517 (1995).  https://doi.org/10.1038/374517a0
  10. 10.
    J. Koepke, X. Hu, C. Muenke, K. Schulten, H. Michel, Structure 4(5), 581 (1996).  https://doi.org/10.1016/S0969-2126(96)00063-9
  11. 11.
    L. Lüer, V. Moulisová, S. Henry, D. Polli, T.H.P. Brotosudarmo, S. Hoseinkhani, D. Brida, G. Lanzani, G. Cerullo, R.J. Cogdell, Proc. Natl. Acad. Sci. 109(5), 1473 (2012).  https://doi.org/10.1073/pnas.1113080109
  12. 12.
    G. Luo, S. Ono, N.J. Beukes, D.T. Wang, S. Xie, R.E. Summons, Sci. Adv. 2(5) (2016).  https://doi.org/10.1126/sciadv.1600134
  13. 13.
    F. London, Phys. Rev. 54, 947 (1938).  https://doi.org/10.1103/PhysRev.54.947
  14. 14.
    W. Greiner, L. Neise, H. Stöcker, Thermodynamics and Statistical Mechanics (Springer, New York, 1995)Google Scholar
  15. 15.
    H. Deng, H. Haug, Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010).  https://doi.org/10.1103/RevModPhys.82.1489
  16. 16.
    A. del Campo, T.W.B. Kibble, W.H. Zurek, J. Phys.: Condens. Matt. 25(40), 404210 (2013).  https://doi.org/10.1088/0953-8984/25/40/404210
  17. 17.
    A. Ferrera, Phys. Rev. D 59, 123503 (1999).  https://doi.org/10.1103/PhysRevD.59.123503
  18. 18.
    G. Baym, C.J. Pethick, Phys. Rev. Lett. 76, 6 (1996). https://doi.org/10.1103/PhysRevLett.76
  19. 19.
    F. Dalfovo, L. Pitaevskii, S. Stringari, Phys. Rev. A 54, 4213 (1996).  https://doi.org/10.1103/PhysRevA.54.4213
  20. 20.
    M. Saba, T.A. Pasquini, C. Sanner, Y. Shin, W. Ketterle, D.E. Pritchard, Science 307(5717), 1945 (2005).  https://doi.org/10.1126/science.1108801
  21. 21.
    S. Raghavan, A. Smerzi, S. Fantoni, S.R. Shenoy, Phys. Rev. A 59, 620 (1999).  https://doi.org/10.1103/PhysRevA.59.620
  22. 22.
    M. Tsubota, K. Kasamatsu, J. Phys. Soc. Jpn. 69(7), 1942 (2000).  https://doi.org/10.1143/JPSJ.69.1942
  23. 23.
    K. Kasamatsu, M. Tsubota, J. Low Temp. Phys. 126(1), 315 (2002).  https://doi.org/10.1023/A:1013741017477
  24. 24.
    P. Nozières, in Bose-Einstein Condensation, ed. by A. Griffin, D.W. Snoke, S. Stringari (Cambridge University Press, Cambridge, 1995), pp. 15–30, chap. 2Google Scholar
  25. 25.
    D.R. Scherer, C.N. Weiler, T.W. Neely, B.P. Anderson, Phys. Rev. Lett. 98, 110402 (2007).  https://doi.org/10.1103/PhysRevLett.98.110402
  26. 26.
    C. Ryu, M.F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, W.D. Phillips, Phys. Rev. Lett. 99, 260401 (2007).  https://doi.org/10.1103/PhysRevLett.99.260401
  27. 27.
    J. Dziarmaga, J. Meisner, W.H. Zurek, Phys. Rev. Lett. 101, 115701 (2008).  https://doi.org/10.1103/PhysRevLett.101.115701
  28. 28.
    R. Monaco, J. Mygind, R.J. Rivers, V.P. Koshelets, Phys. Rev. B 80, 180501 (2009).  https://doi.org/10.1103/PhysRevB.80.180501
  29. 29.
    J.H. Miller, A.I. Wijesinghe, Z. Tang, A.M. Guloy, Phys. Rev. Lett. 108, 036404 (2012).  https://doi.org/10.1103/PhysRevLett.108.036404
  30. 30.
    K. Maki, Phys. Rev. Lett. 39, 46 (1977).  https://doi.org/10.1103/PhysRevLett.39.46
  31. 31.
    J. Bardeen, Phys. Rev. B 39, 3528 (1989).  https://doi.org/10.1103/PhysRevB.39.3528
  32. 32.
    J. Bardeen, Phys. Scr. 1989(T27), 136 (1989).  https://doi.org/10.1088/0031-8949/1989/T27/024
  33. 33.
    B.D. Josephson, Phys. Lett. 1(7), 251 (1962).  https://doi.org/10.1016/0031-9163(62)91369-0
  34. 34.
    B.D. Josephson, Rev. Mod. Phys. 36, 216 (1964).  https://doi.org/10.1103/RevModPhys.36.216
  35. 35.
    B.D. Josephson, Adv. Phys. 14(56), 419 (1965).  https://doi.org/10.1080/00018736500101091
  36. 36.
    S. Coleman, Phys. Rev. D 15, 2929 (1977).  https://doi.org/10.1103/PhysRevD.15.2929
  37. 37.
    N. Ru, C.L. Condron, G.Y. Margulis, K.Y. Shin, J. Laverock, S.B. Dugdale, M.F. Toney, I.R. Fisher, Phys. Rev. B 77, 035114 (2008).  https://doi.org/10.1103/PhysRevB.77.035114
  38. 38.
    F. Schmitt, P.S. Kirchmann, U. Bovensiepen, R.G. Moore, J.H. Chu, D.H. Lu, L. Rettig, M. Wolf, I.R. Fisher, Z.X. Shen, New J. Phys. 13(6), 063022 (2011).  https://doi.org/10.1088/1367-2630/13/6/063022
  39. 39.
    D.W. Snoke, Solid State Physics Essential Concepts (Addison-Wesley, New York, 2009)Google Scholar
  40. 40.
    V.M. Agranovich, Y.N. Gartstein, M. Litinskaya, Chem. Rev. 111(9), 5179 (2011).  https://doi.org/10.1021/cr100156x
  41. 41.
    J. Dostál, T. Mančal, R. Augulis, F. Vácha, J. Pšenčík, D. Zigmantas, J. Am. Chem. Soc. 134(28), 11611 (2012).  https://doi.org/10.1021/ja3025627
  42. 42.
    H.W. Trissl, C.J. Law, R.J. Cogdell, Biochim. Biophys. Acta 1412(2), 149 (1999).  https://doi.org/10.1016/S0005-2728(99)00056-0
  43. 43.
    V. Moulisová, L. Lüer, S. Hoseinkhani, T.H. Brotosudarmo, A.M. Collins, G. Lanzani, R.E. Blankenship, R.J. Cogdell, Biophys. J. 97(11), 3019 (2009).  https://doi.org/10.1016/j.bpj.2009.09.023
  44. 44.
    G. Christmann, G. Tosi, N.G. Berloff, P. Tsotsis, P.S. Eldridge, Z. Hatzopoulos, P.G. Savvidis, J.J. Baumberg, Phys. Rev. B 85, 235303 (2012).  https://doi.org/10.1103/PhysRevB.85.235303
  45. 45.
    D. Tanese, H. Flayac, D. Solnyshkov, A. Amo, A. Lemaître, E. Galopin, R. Braive, P. Senellart, I. Sagnes, G. Malpuech, J. Bloch, 4, 1749 (2013).  https://doi.org/10.1038/ncomms2760
  46. 46.
    M. Abbarchi, A. Amo, V.G. Sala, D.D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaître, G. Malpuech, J. Bloch, Nat. Phys. 9(5), 275 (2013).  https://doi.org/10.1038/nphys2609
  47. 47.
    C.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)Google Scholar
  48. 48.
    D.M. Coles, Y. Yang, Y. Wang, R.T. Grant, R.A. Taylor, S.K. Saikin, A. Aspuru-Guzik, D.G. Lidzey, J.K.H. Tang, J.M. Smith, 5, 5561 (2014).  https://doi.org/10.1038/ncomms6561
  49. 49.
    T.H. Kim, H.W. Yeom, Phys. Rev. Lett. 109, 246802 (2012).  https://doi.org/10.1103/PhysRevLett.109.246802
  50. 50.
    M. Sich, D.V. Skryabin, D.N. Krizhanovskii, C. R. Acad. Sci. 17(8), 908 (2016).  https://doi.org/10.1016/j.crhy.2016.05.002

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Natural SciencesWest Virginia University, Institute of TechnologyBeckleyUSA

Personalised recommendations