Advertisement

Nonlocal Quantum Kinetic Theory and the Formation of Correlations

  • K. Morawetz
Chapter

Abstract

The quantum version of the Boltzmann equation remains still the basis of modern transport theories. Extensions become necessary for transient-time effects like the femtosecond response and for strongly correlated systems. At short time scales higher correlations have no time to develop yet and femto-second laser excitation of collective modes in semiconductors as well as quenches of cold atoms in optical lattices can be described even analytically by fluctuations of the meanfield. For plasma systems exposed to a sudden switching, analytical results are available from the time-dependent Fermi’s Golden Rule in good agreement with the results of two-time Green’s functions solving the Kadanoff and Baym equation. At later times when correlations develop, a kinetic equation of nonlocal and non-instantaneous character unifies the achievements of the transport in dense quantum gases with the Landau theory of quasiclassical transport in Fermi systems. The numerical solution is not more expensive than solving the Boltzmann equation since large cancellations in the off-shell motion appear which are hidden usually in non-Markovian behaviors. The quasiparticle drift of Landau’s equation is connected with a dissipation governed by a nonlocal and non-instant scattering integral in the spirit of Enskog corrections. These corrections are expressed in terms of shifts in space and time that characterize non-locality of the scattering process. In this way quantum transport is possible to recast into a quasi-classical picture. The balance equations for the density, momentum, energy and entropy include besides quasiparticle also the correlated two-particle contributions beyond the Landau theory. The medium effects on binary collisions are shown to mediate the latent heat, i.e., an energy conversion between correlation and thermal energy.

References

  1. 1.
    S. Trotzky, Y. Chen, A. Flesch, I.P. McCulloch, U. Schöllwock, J. Eisert, I. Bloch, Nat. Phys. 8(4), 325 (2012).  https://doi.org/10.1038/nphys2232
  2. 2.
    R. Huber, F. Tauser, A. Brodschelm, A. Leitenstorfer, Phys. Status Solidi B 234(1), 207 (2002).  https://doi.org/10.1002/1521-3951(200211)234:1<207::AID-PSSB207>3.0.CO;2-Z
  3. 3.
    R. Huber, C. Kübler, S. Tübel, A. Leitenstorfer, Q.T. Vu, H. Haug, F. Köhler, M.C. Amann, Phys. Rev. Lett. 94, 027401 (2005).  https://doi.org/10.1103/PhysRevLett.94.027401
  4. 4.
    V.M. Axt, T. Kuhn, Rep. Prog. Phys. 67(4), 433 (2004).  https://doi.org/10.1088/0034-4885/67/4/R01
  5. 5.
    K. Morawetz, P. Lipavský, M. Schreiber, Phys. Rev. B 72, 233203 (2005).  https://doi.org/10.1103/PhysRevB.72.233203
  6. 6.
    K. Morawetz, Phys. Rev. B 90, 075303 (2014).  https://doi.org/10.1103/PhysRevB.90.075303
  7. 7.
    L. Bányai, Q.T. Vu, B. Mieck, H. Haug, Phys. Rev. Lett. 81, 882 (1998).  https://doi.org/10.1103/PhysRevLett.81.882
  8. 8.
    P. Gartner, L. Bányai, H. Haug, Phys. Rev. B 60, 14234 (1999).  https://doi.org/10.1103/PhysRevB.60.14234
  9. 9.
    Q.T. Vu, H. Haug, Phys. Rev. B 62, 7179 (2000).  https://doi.org/10.1103/PhysRevB.62.7179
  10. 10.
    M. Kira, S.W. Koch, Phys. Rev. Lett. 93, 076402 (2004).  https://doi.org/10.1103/PhysRevLett.93.076402
  11. 11.
    L. Boltzmann, Wien. Ber. 66, 275 (1872)Google Scholar
  12. 12.
    S. Chapman, T.C. Cowling, The mathematical theory of nonuniform gases (Cambridge University Press, Cambridge, 1939)zbMATHGoogle Scholar
  13. 13.
    D. Enskog, Kinetiske Theorie der Vorgänge in mäßig verdünnten Gasen (Almqvist & Wiksells, Uppsala, 1917)zbMATHGoogle Scholar
  14. 14.
    J.G. Kirkwood, J. Chem. Phys. 14(3), 180 (1946).  https://doi.org/10.1063/1.1724117
  15. 15.
    N.N. Bogoliubov, J. Phys. (USSR) 10, 256 (1946), Translated in [125]Google Scholar
  16. 16.
    I. Prigogine, Nonequilibrium Statistical Mechanics (Wiley, New York, 1962)zbMATHGoogle Scholar
  17. 17.
    N.N. Bogolyubov, K.P. Gurov, Zh Eksp, Teor. Fiz. 17, 614 (1947)Google Scholar
  18. 18.
    H. Mori, S. Ono, Progr. Theor. Phys. 8(3), 327 (1952).  https://doi.org/10.1143/ptp/8.3.327
  19. 19.
    G. Baym, C. Pethick, Landau Fermi Liquid Theory (Wiley, New York, 1991)CrossRefGoogle Scholar
  20. 20.
    S. Chapman, T.C. Cowling, The Mathematical Theory of Nonuniform Gases, 3rd edn. (Cambridge University Press, Cambridge, 1990)zbMATHGoogle Scholar
  21. 21.
    F.J. Alexander, A.L. Garcia, B.J. Alder, Phys. Rev. Lett. 74, 5212 (1995).  https://doi.org/10.1103/PhysRevLett.74.5212
  22. 22.
    L. Waldmann, Z. Naturforsch. A 15, 19 (1960)Google Scholar
  23. 23.
    R.F. Snider, J. Math. Phys. 5(11), 1580 (1964).  https://doi.org/10.1063/1.1931191
  24. 24.
    K. Bärwinkel, Z. Naturforsch. A 24, 38 (1969)Google Scholar
  25. 25.
    M.W. Thomas, R.F. Snider, J. Stat. Phys. 2(1), 61 (1970).  https://doi.org/10.1007/BF01009711
  26. 26.
    R.F. Snider, B.C. Sanctuary, J. Chem. Phys. 55(4), 1555 (1971).  https://doi.org/10.1063/1.1676279
  27. 27.
    J.C. Rainwater, R.F. Snider, J. Chem. Phys. 65(11), 4958 (1976).  https://doi.org/10.1063/1.432972
  28. 28.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanis (Wiley, New York, 1975)zbMATHGoogle Scholar
  29. 29.
    J.A. McLennan, Introduction to nOnequilibrium Statistical Mechanics (Prentice Hall, Englewood Cliffs, 1989)Google Scholar
  30. 30.
    F. Laloë, J. Phys. (Paris) 50(14), 1851 (1989).  https://doi.org/10.1051/jphys:0198900500140185100
  31. 31.
    P.J. Nacher, G. Tastevin, F. Laloë, J. Phys. (Paris) 50(14), 1907 (1989).  https://doi.org/10.1051/jphys:0198900500140190700
  32. 32.
    D. Loss, J. Stat. Phys. 61(1), 467 (1990).  https://doi.org/10.1007/BF01013976
  33. 33.
    M. De Haan, Physica A 170(3), 571 (1991).  https://doi.org/10.1016/0378-4371(91)90007-Y
  34. 34.
    F. Laloë, W.J. Mullin, J. Stat. Phys. 59(3), 725 (1990).  https://doi.org/10.1007/BF01025848
  35. 35.
    P.J. Nacher, G. Tastevin, F. Laloë, Ann. Phys. (Berlin) 503(1–3), 149 (1991).  https://doi.org/10.1002/andp.19915030114
  36. 36.
    P.J. Nacher, G. Tastevin, F. Laloë, J. Phys. I (Paris) 1(2), 181 (1991).  https://doi.org/10.1051/jp1:1991124
  37. 37.
    R.F. Snider, J. Stat. Phys. 80(5), 1085 (1995).  https://doi.org/10.1007/BF02179865
  38. 38.
    R.F. Snider, W.J. Mullin, F. Laloë, Physica A 218(1), 155 (1995).  https://doi.org/10.1016/0378-4371(95)00124-P
  39. 39.
    V. Špička, P. Lipavský, K. Morawetz, Phys. Rev. B 55, 5084 (1997).  https://doi.org/10.1103/PhysRevB.55.5084
  40. 40.
    V. Špička, P. Lipavský, K. Morawetz, Phys. Rev. B 55, 5095 (1997).  https://doi.org/10.1103/PhysRevB.55.5095
  41. 41.
    V. Špička, P. Lipavský, K. Morawetz, Phys. Lett. A 240(3), 160 (1998).  https://doi.org/10.1016/S0375-9601(98)00061-9
  42. 42.
    P. Lipavský, K. Morawetz, V. Špička, Ann. Phys. Fr. 26(1), 1 (2001).  https://doi.org/10.1051/anphys:200101001
  43. 43.
    K. Morawetz, P. Lipavský, V. Špička, Ann. Phys. 294(2), 135 (2001).  https://doi.org/10.1006/aphy.2001.6197
  44. 44.
    K. Morawetz, P. Lipavský, V. Špička, N.H. Kwong, Phys. Rev. C 59, 3052 (1999).  https://doi.org/10.1103/PhysRevC.59.3052
  45. 45.
    I.B. Levinson, Zh. Eksp. Teor. Fiz. 57, 660 (1969), [Sov. Phys. JETP 30, 362 (1970)]Google Scholar
  46. 46.
    H.S. Köhler, K. Morawetz, Phys. Rev. C 64, 024613 (2001).  https://doi.org/10.1103/PhysRevC.64.024613
  47. 47.
    K. Morawetz, V. Špička, P. Lipavský, Phys. Lett. A 246(3), 311 (1998).  https://doi.org/10.1016/S0375-9601(98)00356-9
  48. 48.
    G. Zwicknagel, C. Toeppfer, P.G. Reinhard, in Physics of Strongly Coupled Plasmas, ed. by W.D. Kraeft, M. Schlanges, H. Haberland, T. Bornath (World Scientific, Singapore, 1995), p. 45Google Scholar
  49. 49.
    K. Morawetz, H.S. Köhler, Eur. Phys. J. A 4(3), 291 (1999).  https://doi.org/10.1007/s100500050233
  50. 50.
    A. Flesch, M. Cramer, I.P. McCulloch, U. Schollwöck, J. Eisert, Phys. Rev. A 78, 033608 (2008).  https://doi.org/10.1103/PhysRevA.78.033608
  51. 51.
    N. Syassen, D.M. Bauer, M. Lettner, T. Volz, D. Dietze, J.J. García-Ripoll, J.I. Cirac, G. Rempe, S. Dürr, Science 320(5881), 1329 (2008).  https://doi.org/10.1126/science.1155309
  52. 52.
    N.D. Mermin, Phys. Rev. B 1, 2362 (1970).  https://doi.org/10.1103/PhysRevB.1.2362
  53. 53.
    A.K. Das, J. Phys. F 5(11), 2035 (1975).  https://doi.org/10.1088/0305-4608/5/11/015
  54. 54.
    K. Morawetz, Phys. Rev. E 88, 022148 (2013).  https://doi.org/10.1103/PhysRevE.88.022148
  55. 55.
    W. Jones, N.H. March, Theoretical Solid-State Physics. Non-equilibrium and Disorder, vol. 2 (Dover, New York, 1986). ISBN 9780486650166Google Scholar
  56. 56.
    K. El Sayed, S. Schuster, H. Haug, F. Herzel, K. Henneberger, Phys. Rev. B 49, 7337 (1994).  https://doi.org/10.1103/PhysRevB.49.7337
  57. 57.
    K. Morawetz (ed.), Nonequilibrium Physics at Short Time Scales (Formation of Correlations (Springer, Berlin, 2004)Google Scholar
  58. 58.
    R.A. Craig, Ann. Phys. 40(3), 416 (1966).  https://doi.org/10.1016/0003-4916(66)90143-6
  59. 59.
    B. Bezzerides, D.F. DuBois, Phys. Rev. 168, 233 (1968).  https://doi.org/10.1103/PhysRev.168.233
  60. 60.
    H. Stolz, R. Zimmermann, Phys. Status Solidi B 94(1), 135 (1979).  https://doi.org/10.1002/pssb.2220940114
  61. 61.
    D. Kremp, W.D. Kraeft, A.J.D. Lambert, Physica A 127(1), 72 (1984).  https://doi.org/10.1016/0378-4371(84)90120-1
  62. 62.
    M. Schmidt, G. Röpke, Phys. Status Solidi B 139(2), 441 (1987).  https://doi.org/10.1002/pssb.2221390212
  63. 63.
    H.S. Köhler, R. Malfliet, Phys. Rev. C 48, 1034 (1993).  https://doi.org/10.1103/PhysRevC.48.1034
  64. 64.
    V. Špička, P. Lipavský, Phys. Rev. B 52, 14615 (1995).  https://doi.org/10.1103/PhysRevB.52.14615
  65. 65.
    K. Bärwinkel, in Proceedings of the 14th International Symposium on Rarefied Gas Dynamics, ed. by H. Oguchi (University of Tokyo Press, Tokyo, 1984). ISBN 9784130681094Google Scholar
  66. 66.
    R.F. Snider, J. Stat. Phys. 63(3), 707 (1991).  https://doi.org/10.1007/BF01029207
  67. 67.
    N.H. March, R. Santamaria, Int. J. Quantum Chem. 39(4), 585 (1991).  https://doi.org/10.1002/qua.560390405
  68. 68.
    N.H. March, Phys. Rev. A 56, 1025 (1997).  https://doi.org/10.1103/PhysRevA.56.1025
  69. 69.
    H.S. Köhler, Phys. Rev. C 51, 3232 (1995).  https://doi.org/10.1103/PhysRevC.51.3232
  70. 70.
    M. Schmidt, G. Röpke, H. Schulz, Ann. Phys. 202(1), 57 (1990).  https://doi.org/10.1016/0003-4916(90)90340-T
  71. 71.
    K. Morawetz, G. Roepke, Phys. Rev. E 51, 4246 (1995).  https://doi.org/10.1103/PhysRevE.51.4246
  72. 72.
    P. Lipavský, V. Špička, K. Morawetz, Phys. Rev. E 59, R1291 (1999).  https://doi.org/10.1103/PhysRevE.59.R1291
  73. 73.
    V. Špička, K. Morawetz, P. Lipavský, Phys. Rev. E 64, 046107 (2001).  https://doi.org/10.1103/PhysRevE.64.046107
  74. 74.
    K. Morawetz, V. Špička, P. Lipavský, G. Kortemeyer, C. Kuhrts, R. Nebauer, Phys. Rev. Lett. 82, 3767 (1999).  https://doi.org/10.1103/PhysRevLett.82.3767
  75. 75.
    K. Morawetz, Phys. Rev. C 62, 044606 (2000).  https://doi.org/10.1103/PhysRevC.62.044606
  76. 76.
    K. Morawetz, M. Płoszajczak, V.D. Toneev, Phys. Rev. C 62, 064602 (2000).  https://doi.org/10.1103/PhysRevC.62.064602
  77. 77.
    K. Morawetz, P. Lipavský, J. Normand, D. Cussol, J. Colin, B. Tamain, Phys. Rev. C 63, 034619 (2001).  https://doi.org/10.1103/PhysRevC.63.034619
  78. 78.
    K. Morawetz, Phys. Rev. E 96, 032106 (2017). https://doi.org/10.1103/PhysRevE.96.032106
  79. 79.
    K. Morawetz, Interacting Systems far From Equilibrium (Quantum Kinetic Theory (Oxford University Press, Oxford, 2017)zbMATHGoogle Scholar
  80. 80.
    J. Tõke, B. Lott, S.P. Baldwin, B.M. Quednau, W.U. Schröder, L.G. Sobotka, J. Barreto, R.J. Charity, D.G. Sarantites, D.W. Stracener, R.T. de Souza, Phys. Rev. Lett. 75, 2920 (1995).  https://doi.org/10.1103/PhysRevLett.75.2920
  81. 81.
    S.P. Baldwin, B. Lott, B.M. Szabo, B.M. Quednau, W.U. Schröder, J. Tõke, L.G. Sobotka, J. Barreto, R.J. Charity, L. Gallamore, D.G. Sarantites, D.W. Stracener, R.T. de Souza, Phys. Rev. Lett. 74, 1299 (1995).  https://doi.org/10.1103/PhysRevLett.74.1299
  82. 82.
    W. Skulski, B. Djerroud, D.K. Agnihotri, S.P. Baldwin, J. Tõke, X. Zhao, W.U. Schröder, L.G. Sobotka, R.J. Charity, J. Dempsey, D.G. Sarantites, B. Lott, W. Loveland, K. Aleklett, Phys. Rev. C 53, R2594 (1996).  https://doi.org/10.1103/PhysRevC.53.R2594
  83. 83.
    S. Chattopadhyay, Phys. Rev. C 52, R480 (1995).  https://doi.org/10.1103/PhysRevC.52.R480
  84. 84.
    S. Chattopadhyay, Phys. Rev. C 53, R1065 (1996).  https://doi.org/10.1103/PhysRevC.53.R1065
  85. 85.
    E. Suraud, S. Ayik, J. Stryjewski, M. Belkacem, Nucl. Phys. A 519(1), 171 (1990).  https://doi.org/10.1016/0375-9474(90)90624-U
  86. 86.
    S. Ayik, C. Grégoire, Nucl. Phys. A 513(1), 187 (1990).  https://doi.org/10.1016/0375-9474(90)90348-P
  87. 87.
    J. Randrup, B. Remaud, Nucl. Phys. A 514(2), 339 (1990).  https://doi.org/10.1016/0375-9474(90)90075-W
  88. 88.
    S. Ayik, E. Suraud, M. Belkacem, D. Boilley, Nucl. Phys. A 545(1), 35 (1992).  https://doi.org/10.1016/0375-9474(92)90444-O
  89. 89.
    M. Colonna, G.F. Burgio, P. Chomaz, M. Di Toro, J. Randrup, Phys. Rev. C 47, 1395 (1993).  https://doi.org/10.1103/PhysRevC.47.1395
  90. 90.
    M. Colonna, P. Chomaz, J. Randrup, Nucl. Phys. A 567(3), 637 (1994).  https://doi.org/10.1016/0375-9474(94)90029-9
  91. 91.
    P. Reinhard, E. Suraud, S. Ayik, Ann. Phys. 213(1), 204 (1992).  https://doi.org/10.1016/0003-4916(92)90289-X
  92. 92.
    P. Reinhard, E. Suraud, Ann. Phys. 216(1), 98 (1992).  https://doi.org/10.1016/0003-4916(52)90043-2
  93. 93.
    R. Balian, M. Vénéroni, Ann. Phys. 164(2), 334 (1985).  https://doi.org/10.1016/0003-4916(85)90020-X
  94. 94.
    H. Flocard, Ann. Phys. 191(2), 382 (1989).  https://doi.org/10.1016/0003-4916(89)90323-0
  95. 95.
    T. Troudet, D. Vautherin, Phys. Rev. C 31, 278 (1985). https://doi.org/10.1103/PhysRevC.31.278
  96. 96.
    The INDRA Collaboration, F. Bocage, J. Colin, M. Louvel, G. Auger, C. Bacri, N. Bellaize, B. Borderie, R. Bougault, R. Brou, P. Buchet, J.L. Charvet, A. Chbihi, D. Cussol, R. Dayras, N.D. Cesare, A. Demeyer, D. Doré, D. Durand, J.D. Frankland, E. Galichet, E. Genouin-Duhamel, E. Gerlic, D. Guinet, P. Lautesse, J.L. Laville, J.F. Lecolley, R. Legrain, N.L. Neindre, O. Lopez, A.M. Maskay, L. Nalpas, A.D. Nguyen, M. Pârlog, J. Péter, E. Plagnol, M.F. Rivet, E. Rosato, F. Saint-Laurent, S. Salou, J. Steckmeyer, M. Stern, G. Tăbăcaru, B. Tamain, O. Tirel, L. Tassan-Got, E. Vient, M. Vigilante, C. Volant, J.P. Wieleczko, C.L. Brun, A. Genoux-Lubain, G. Rudolf, L. Stuttgé, Nucl. Phys. A 676(1), 391 (2000).  https://doi.org/10.1016/S0375-9474(00)00193-7
  97. 97.
    The INDRA Collaboration, E. Plagnol, J. Łukasik, G. Auger, C.O. Bacri, N. Bellaize, F. Bocage, B. Borderie, R. Bougault, R. Brou, P. Buchet, J.L. Charvet, A. Chbihi, J. Colin, D. Cussol, R. Dayras, A. Demeyer, D. Doré, D. Durand, J.D. Frankland, E. Galichet, E. Genouin-Duhamel, E. Gerlic, D. Guinet, P. Lautesse, J.L. Laville, J.F. Lecolley, R. Legrain, N. Le Neindre, O. Lopez, M. Louvel, A.M. Maskay, L. Nalpas, A.D. Nguyen, M. Pârlog, J. Péter, M.F. Rivet, E. Rosato, F. Saint-Laurent, S. Salou, J.C. Steckmeyer, M. Stern, G. Tăbăcaru, B. Tamain, L. Tassan-Got, O. Tirel, E. Vient, C. Volant, J.P. Wieleczko, Phys. Rev. C 61, 014606 (1999). https://doi.org/10.1103/PhysRevC.61.014606
  98. 98.
    The INDRA Collaboration, J. Lecolley, E. Galichet, D.C.R. Guinet, R. Bougault, F. Gulminelli, G. Auger, C. Bacri, F. Bocage, B. Borderie, R. Brou, P. Buchet, J. Charvet, A. Chbihi, J. Colin, D. Cussol, R. Dayras, A. Demeyer, D. Doré, D. Durand, J.D. Frankland, E. Genouin-Duhamel, E. Gerlic, P. Lautesse, J. Laville, T. Lefort, R. Legrain, N. LeNeindre, O. Lopez, M. Louvel, A. Maskay, L. Nalpas, A.D. Nguyen, M. Parlog, J. Péter, E. Plagnol, M. Rivet, E. Rosato, F. Saint-Laurent, J. Steckmeyer, M. Stern, G. Tăbăcaru, B. Tamain, L. Tassan-Got, O. Tirel, E. Vient, C. Volant, J.P. Wieleczko, Nucl. Instr. Meth. Phys. Res. A 441(3), 517 (2000). https://doi.org/10.1016/S0168-9002(99)00831-1
  99. 99.
    V. Ambegaokar, in Superconductivity, vol. 1, ed. by R.D. Parks (Dekker, New York, 1969), chap. 5, p. 259Google Scholar
  100. 100.
    K. Morawetz, P. Lipavský, J. Koláček, E.H. Brandt, M. Schreiber, Int. J. Mod. Phys. B 21(13n14), 2348 (2007). https://doi.org/10.1142/S0217979207043713
  101. 101.
    G. Rickayzen, J. Phys. C 2(7), 1334 (1969).  https://doi.org/10.1088/0022-3719/2/7/325
  102. 102.
    J. Bok, J. Klein, Phys. Rev. Lett. 20, 660 (1968).  https://doi.org/10.1103/PhysRevLett.20.660
  103. 103.
    T.D. Morris, J.B. Brown, Physica 55, 760 (1971).  https://doi.org/10.1016/0031-8914(71)90330-2
  104. 104.
    P. Lipavský, J. Koláček, J.J. Mareš, K. Morawetz, Phys. Rev. B 65, 012507 (2001).  https://doi.org/10.1103/PhysRevB.65.012507
  105. 105.
    H.F. Budd, J. Vannimenus, Phys. Rev. Lett. 31, 1218 (1973).  https://doi.org/10.1103/PhysRevLett.31.1218
  106. 106.
    K. Morawetz, N.H. March, R.H. Squire, Phys. Lett. A 372(10), 1707 (2008).  https://doi.org/10.1016/j.physleta.2007.10.025
  107. 107.
    P. Lipavský, K. Morawetz, J. Koláček, J.J. Mareš, E.H. Brandt, M. Schreiber, Phys. Rev. B 69, 024524 (2004).  https://doi.org/10.1103/PhysRevB.69.024524
  108. 108.
    P. Lipavský, K. Morawetz, J. Koláček, J.J. Mareš, E.H. Brandt, M. Schreiber, Phys. Rev. B 71, 024526 (2005).  https://doi.org/10.1103/PhysRevB.71.024526
  109. 109.
    P. Lipavský, K. Morawetz, J. Koláček, J.J. Mareš, E.H. Brandt, M. Schreiber, Phys. Rev. B 70, 104518 (2004).  https://doi.org/10.1103/PhysRevB.70.104518
  110. 110.
    K. Kumagai, K. Nozaki, Y. Matsuda, Phys. Rev. B 63, 144502 (2001).  https://doi.org/10.1103/PhysRevB.63.144502
  111. 111.
    P. Lipavský, J. Koláček, K. Morawetz, E.H. Brandt, Phys. Rev. B 66, 134525 (2002).  https://doi.org/10.1103/PhysRevB.66.134525
  112. 112.
    P. Lipavský, J. Koláček, K. Morawetz, E.H. Brandt, T.J. Yang (eds.), Bernoulli Potential in Superconductors, vol. 733, Lecture Notes in Physics (Springer, Berlin, 2008). ISBN 9783540734550. https://doi.org/10.1007/978-3-540-73456-7
  113. 113.
    C. Amovilli, N.H. March, Phys. Rev. A 69(5), 054302 (2004).  https://doi.org/10.1103/PhysRevA.69.054302
  114. 114.
    N.H. March, G.G.N. Angilella, R. Pucci, Int. J. Mod. Phys. B 27, 1330021 (2013).  https://doi.org/10.1142/S0217979213300211
  115. 115.
    Y.B. Ivanov, J. Knoll, D.N. Voskresensky, Phys. Atomic Nuclei 66(10), 1902 (2003).  https://doi.org/10.1134/1.1619502
  116. 116.
    A. Peshier, Phys. Rev. D 70, 034016 (2004).  https://doi.org/10.1103/PhysRevD.70.034016
  117. 117.
    W.M. Alberico, S. Chiacchiera, H. Hansen, A. Molinari, M. Nardi, Eur. Phys. J. A 38(1), 97 (2008).  https://doi.org/10.1140/epja/i2008-10648-8
  118. 118.
    C. Moustakidis, V.P. Psonis, K. Chatzisavvas, C.P. Panos, S.E. Massen, Phys. Rev. E 81, 011104 (2010).  https://doi.org/10.1103/PhysRevE.81.011104
  119. 119.
    E. Suraud, P.G. Reinhard, New J. Phys. 16(6), 063066 (2014).  https://doi.org/10.1088/1367-2630/16/6/063066
  120. 120.
    S.K. Baur, E.J. Mueller, Phys. Rev. A 82, 023626 (2010).  https://doi.org/10.1103/PhysRevA.82.023626
  121. 121.
    J.G. Kirkwood, E. Monroe, Boggs. J. Chem. Phys. 10(6), 394 (1942).  https://doi.org/10.1063/1.1723737
  122. 122.
    B.B. Laird, A.D.J. Haymet, Phys. Rev. A 45, 5680 (1992).  https://doi.org/10.1103/PhysRevA.45.5680
  123. 123.
    D. Nayar, C. Chakravarty, Phys. Chem. Chem. Phys. 15, 14162 (2013).  https://doi.org/10.1039/C3CP51114F
  124. 124.
    M. Puoskari, Physica A 272(3), 509 (1999).  https://doi.org/10.1016/S0378-4371(99)00262-9
  125. 125.
    J.A. Hernando, L. Blum, Phys. Rev. E 62, 6577 (2000).  https://doi.org/10.1103/PhysRevE.62.6577
  126. 126.
    D. de Boer, G.E. Uhlenbeck (eds.), Studies in Statistical Mechanics, vol. 1 (North-Holland, Amsterdam, 1962)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Münster University of Applied SciencesSteinfurtGermany
  2. 2.International Institute of Physics (IIP), Campus Universitário Lagoa NovaNatalBrazil
  3. 3.Max-Planck-Institute for the Physics of Complex SystemsDresdenGermany

Personalised recommendations