Skip to main content

Orbital-Free Density Functional Theory: Pauli Potential and Density Scaling

  • Chapter
  • First Online:
Many-body Approaches at Different Scales

Abstract

In orbital-free density functional theory only a single equation, the so-called Euler equation, has to be solved for any system instead of the Kohn–Sham equations. The Euler equation is a Schrödinger-like equation for the square root of the density. This equation contains an extra potential, the so-called Pauli potential, in addition to the usual Kohn–Sham potential. Equations for the Pauli potential, the relationship of the Pauli potential and Pauli energy are reviewed. A derivation of the Euler equation via density scaling is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.H. Thomas, Math. Proc. Camb. Philos. Soc. 23, 542 (1926). https://doi.org/10.1017/S0305004100011683

  2. E. Fermi, Z. Phys. 48, 73 (1928). https://doi.org/10.1007/BF01351576

  3. P.A.M. Dirac, Proc. Camb. Philos. Soc. 26, 376 (1930). https://doi.org/10.1017/S0305004100016108

  4. P. Gombás, Die statistische Theorie des Atoms und ihre Anwendungen (Springer, Vienna, 1949)

    Book  MATH  Google Scholar 

  5. P.C. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864

  6. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

  7. C.F. von Weizsäcker, Z. Phys. 96, 431 (1935). https://doi.org/10.1007/BF01337700

  8. M. Levy, J.P. Perdew, V. Sahni, Phys. Rev. A 30, 2745 (1984). https://doi.org/10.1103/PhysRevA.30.2745

  9. N.H. March, Phys. Lett. A 113(2), 66 (1985); Reprinted in Ref. [39]. https://doi.org/10.1016/0375-9601(85)90654-1

  10. N.H. March, Phys. Lett. A 113(9), 476 (1986), Reprinted in Ref. [39]. 10.1016/0375-9601(86)90123-4

    Google Scholar 

  11. N.H. March, J. Comput. Chem. 8(4), 375 (1987). https://doi.org/10.1002/jcc.540080414

  12. M. Levy, H. Ou-Yang, Phys. Rev. A 38, 625 (1988). https://doi.org/10.1103/PhysRevA.38.625

  13. C. Herring, M. Chopra, Phys. Rev. A 37, 31 (1988). https://doi.org/10.1103/PhysRevA.37.31

  14. A. Holas, N.H. March, Phys. Rev. A 44, 5521 (1991). https://doi.org/10.1103/PhysRevA.44.5521

  15. A. Nagy, N.H. March, Phys. Chem. Liq. 22(1–2), 129 (1990). https://doi.org/10.1080/00319109008036419

  16. Á. Nagy, Acta Phys. Hung. 70(4), 321 (1991). https://doi.org/10.1007/BF03054145

  17. A. Nagy, N.H. March, Int. J. Quantum Chem. 39(4), 615 (1991). https://doi.org/10.1002/qua.560390408

  18. A. Nagy, N.H. March, Phys. Chem. Liq. 25(1), 37 (1992). https://doi.org/10.1080/00319109208027285

  19. A. Nagy, N.H. March, Phys. Chem. Liq. 38(6), 759 (2000). https://doi.org/10.1080/00319100008030321

  20. N.H. March, A. Nagy, Phys. Rev. A 78, 044501 (2008). https://doi.org/10.1103/PhysRevA.78.044501

  21. N.H. March, A. Nagy, Phys. Rev. A 81, 014502 (2010). https://doi.org/10.1103/PhysRevA.81.014502

  22. N.H. March, A. Nagy, F. Bogár, F. Bartha, Phys. Chem. Liq. 50(3), 412 (2012). https://doi.org/10.1080/00319104.2012.673721

  23. N.H. March, J. Mol. Struct.: THEOCHEM 943(1), 77 (2010) (Conceptual Aspects of Electron Densities and Density Functionals). https://doi.org/10.1016/j.theochem.2009.10.030

  24. V.G. Tsirelson, A.I. Stash, V.V. Karasiev, S. Liu, Comput. Theor. Chem. 1006, 92 (2013). https://doi.org/10.1016/j.comptc.2012.11.015

  25. N.H. March, W.H. Young, Nucl. Phys. 12(3), 237 (1959). https://doi.org/10.1016/0029-5582(59)90169-5

  26. A. Nagy, N.H. March, Phys. Rev. A 40, 554 (1989). https://doi.org/10.1103/PhysRevA.40.554

  27. A. Holas, N.H. March, Phys. Rev. A 51, 2040 (1995); Reprinted in Ref. [39]. https://doi.org/10.1103/PhysRevA.51.2040

  28. N.H. March, A. Nagy, J. Chem. Phys. 129(19), 194114 (2008). https://doi.org/10.1063/1.3013808

  29. A. Nagy, Phys. Rev. A 84, 032506 (2011). https://doi.org/10.1103/PhysRevA.84.032506

  30. G.K.L. Chan, N.C. Handy, Phys. Rev. A 59, 2670 (1999). https://doi.org/10.1103/PhysRevA.59.2670

  31. A. Nagy, Chem. Phys. Lett. 411(4), 492 (2005). https://doi.org/10.1016/j.cplett.2005.06.078

  32. A. Nagy, J. Chem. Phys. 123(4), 044105 (2005). https://doi.org/10.1063/1.1979473

  33. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982). https://doi.org/10.1103/PhysRevLett.49.1691

  34. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989). ISBN 9780195092769

    Google Scholar 

  35. I. Ekeland, R. Teman, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976)

    Google Scholar 

  36. R. van Leeuwen, Adv. Quantum Chem. 43, 25 (2003). https://doi.org/10.1016/S0065-3276(03)43002-5

  37. M. Levy, Proc. Natl. Acad. Sci. 76(12), 6062 (1979)

    Article  ADS  Google Scholar 

  38. E.H. Lieb, Int. J. Quantum Chem. 24(3), 243 (1983). https://doi.org/10.1002/qua.560240302

  39. N.H. March, G.G.N. Angilella (eds.), Many-Body Theory of Molecules, Clusters, and Condensed Phases (World Scientific, Singapore, 2009)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the EU-funded Hungarian grant EFOP-3.6.2-16-2017-00005 and the National Research, Development and Innovation Fund of Hungary, financed under 123988 funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Á. Nagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagy, Á. (2018). Orbital-Free Density Functional Theory: Pauli Potential and Density Scaling. In: Angilella, G., Amovilli, C. (eds) Many-body Approaches at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-72374-7_21

Download citation

Publish with us

Policies and ethics