Alchemical Derivatives of Atoms: A Walk Through the Periodic Table

  • Robert Balawender
  • Andrzej Holas
  • Frank De Proft
  • Christian Van Alsenoy
  • Paul Geerlings
Chapter

Abstract

Exploring the Chemical Compound Space is at stake when looking for molecules with optimal properties. In order to guide experimentalists to navigate through this unimaginably huge space, theoreticians should look for efficient and cheap algorithms. One of the strategies put forward some years ago was to look for transmutation of molecular structures, thereby changing their nuclear charge content, for which alchemical derivatives are instrumental. A collection of well tested isolated atom alchemical derivatives would be a basic instrument in a navigation toolbox. In this work, isolated atom alchemical derivatives were evaluated with different techniques, from the more accurate numerical differentiation and Coupled Perturbed Kohn–Sham approaches to the \(Z^{-1}\) energy expansion model which upon derivation with respect to Z yields the desired derivatives. For this third approach a systematic, computationally elegant, method is developed to routinely evaluate an optimal set of all expansion coefficients in the energy expansion for a given N. For the lighter elements, \(Z=1-18\), the comparison between the three approaches shows that the order of magnitude and sequences in the different approaches are similar paving the way for a walk through the complete Periodic Table by combining the \(Z^{-1}\) expansion approach with the National Institute of Standards and Technology (NIST) databank atomic energy values at various levels of LDA. A uniform decrease is retrieved not only for the alchemical potential (the electrostatic potential at the origin) but also for the alchemical hardness, with some minor exceptions. The latter values are relatively strongly influenced by relativistic effects for the heavy elements. The uniform decrease of the first derivative is evidenced and quantified. Periodicity shows up in some exploratory calculations on the third derivative (the hyperhardness) which turn out to be strongly basis set dependent. The Periodic Tables generated could be used in a first step in exploring Chemical Compound Space in a systematic, efficient and cheap way. Some possible refinements (atoms-in-molecules corrections) and extensions (inclusion of mixed Z and N derivatives) are touched upon.

Notes

Acknowledgements

The authors acknowledge financial support by the VUB (Vrije Universiteit Brussel) under the form of a Strategic Research Program (SRP) (PG and FDP), the Interdisciplinary Centre for Mathematical and Computational Modelling computational grant (RB). FDP also acknowledges the Francqui foundation for a position as Francqui research professor. It is both an honour and a pleasure for all of us to dedicate this paper to Professor Norman March, a towering scientist, a true companion and loyal guide on the road to good science, every inch a gentleman. Congratulations, Norman, on the occasion of your 90th birthday!

References

  1. 1.
    P. Kirkpatrick, C. Ellis, Nature 432(7019), 823 (2004).  https://doi.org/10.1038/432823a
  2. 2.
    C.M. Dobson, Nature 432(7019), 824 (2004).  https://doi.org/10.1038/nature03192
  3. 3.
    O.A. von Lilienfeld, Int. J. Quantum Chem. 113(12), 1676 (2013).  https://doi.org/10.1002/qua.24375
  4. 4.
    A. Franceschetti, A. Zunger, Nature 402(6757), 60 (1999).  https://doi.org/10.1038/46995
  5. 5.
    G.H. Jóhannesson, T. Bligaard, A.V. Ruban, H.L. Skriver, K.W. Jacobsen, J.K. Nørskov, Phys. Rev. Lett. 88, 255506 (2002).  https://doi.org/10.1103/PhysRevLett.88.255506
  6. 6.
    M. Wang, X. Hu, D.N. Beratan, W. Yang, J. Am. Chem. Soc. 128(10), 3228 (2006).  https://doi.org/10.1021/ja0572046
  7. 7.
    C. Kuhn, D.N. Beratan, J. Phys. Chem. 100(25), 10595 (1996).  https://doi.org/10.1021/jp960518i
  8. 8.
    D. Balamurugan, W. Yang, D.N. Beratan, J. Chem. Phys. 129(17), 174105 (2008).  https://doi.org/10.1063/1.2987711
  9. 9.
    F. De Vleeschouwer, A. Chankisjijev, P. Geerlings, F. De Proft, Eur. J. Org. Chem. 2015(3), 506 (2015).  https://doi.org/10.1002/ejoc.201403198
  10. 10.
    F. De Vleeschouwer, P. Geerlings, F. De Proft, Chem. Phys. Chem. 17(10), 1414 (2016).  https://doi.org/10.1002/cphc.201501189
  11. 11.
    O.A. von Lilienfeld, R.D. Lins, U. Rothlisberger, Phys. Rev. Lett. 95, 153002 (2005).  https://doi.org/10.1103/PhysRevLett.95.153002
  12. 12.
    O.A. von Lilienfeld, M.E. Tuckerman, J. Chem. Phys. 125(15), 154104 (2006).  https://doi.org/10.1063/1.2338537
  13. 13.
    O.A. von Lilienfeld, M.E. Tuckerman, J. Chem. Theory Comput. 3(3), 1083 (2007), PMID: 26627427.  https://doi.org/10.1021/ct700002c
  14. 14.
    O.A. von Lilienfeld, J. Chem. Phys. 131(16), 164102 (2009).  https://doi.org/10.1063/1.3249969
  15. 15.
    K.Y.S. Chang, S. Fias, R. Ramakrishnan, O.A. von Lilienfeld, J. Chem. Phys. 144(17), 174110 (2016).  https://doi.org/10.1063/1.4947217
  16. 16.
    M. to Baben, J.O. Achenbach, O.A. von Lilienfeld, J. Chem. Phys. 144(10), 104103 (2016).  https://doi.org/10.1063/1.4943372
  17. 17.
    M. Lesiuk, R. Balawender, J. Zachara, J. Chem. Phys. 136(3), 034104 (2012).  https://doi.org/10.1063/1.3674163
  18. 18.
    R. Balawender, M.A. Welearegay, M. Lesiuk, F. De Proft, P. Geerlings, J. Chem. Theory Comput. 9(12), 5327 (2013).  https://doi.org/10.1021/ct400706g
  19. 19.
    R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989). ISBN 9780195092769Google Scholar
  20. 20.
    P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103(5), 1793 (2003).  https://doi.org/10.1021/cr990029p
  21. 21.
    P. Geerlings, F. De Proft, Phys. Chem. Chem. Phys. 10, 3028 (2008).  https://doi.org/10.1039/B717671F
  22. 22.
    S. Liu, T. Li, P.W. Ayers, J. Chem. Phys. 131(11), 114106 (2009).  https://doi.org/10.1063/1.3231687
  23. 23.
    P. Geerlings, Z. Boisdenghien, F. De Proft, S. Fias, Theor. Chem. Acc. 135(9), 213 (2016).  https://doi.org/10.1007/s00214-016-1967-9
  24. 24.
    P. Geerlings, S. Fias, Z. Boisdenghien, F. De Proft, Chem. Soc. Rev. 43, 4989 (2014).  https://doi.org/10.1039/C3CS60456J
  25. 25.
    N. Sablon, F. De Proft, P.W. Ayers, P. Geerlings, J. Chem. Phys. 126(22), 224108 (2007).  https://doi.org/10.1063/1.2736698
  26. 26.
    W. Yang, A.J. Cohen, F. De Proft, P. Geerlings, J. Chem. Phys. 136(14), 144110 (2012).  https://doi.org/10.1063/1.3701562
  27. 27.
    N. Sablon, F. De Proft, P. Geerlings, J. Phys. Chem. Lett. 1(8), 1228 (2010).  https://doi.org/10.1021/jz1002132
  28. 28.
    S. Fias, P. Geerlings, P. Ayers, F. De Proft, Phys. Chem. Chem. Phys. 15, 2882 (2013).  https://doi.org/10.1039/C2CP43612D
  29. 29.
    Z. Boisdenghien, S. Fias, F. Da Pieve, F. De Proft, P. Geerlings, Mol. Phys. 113(13-14), 1890 (2015).  https://doi.org/10.1080/00268976.2015.1021110
  30. 30.
    Z. Boisdenghien, C. Van Alsenoy, F. De Proft, P. Geerlings, J. Chem. Theory Comput. 9(2), 1007 (2013).  https://doi.org/10.1021/ct300861r
  31. 31.
    T. Stuyver, S. Fias, F. De Proft, P.W. Fowler, P. Geerlings, J. Chem. Phys. 142(9), 094103 (2015).  https://doi.org/10.1063/1.4913415
  32. 32.
    R. Balawender, M. Lesiuk, F. De Proft, P. Geerlings, J. Chem. Theory Comput. 14(2), (2018).  https://doi.org/10.1021/acs.jctc.7b01114
  33. 33.
    R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68(8), 3801 (1978).  https://doi.org/10.1063/1.436185
  34. 34.
    R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105(26), 7512 (1983).  https://doi.org/10.1021/ja00364a005
  35. 35.
    P. Fuentealba, R.G. Parr, J. Chem. Phys. 94(8), 5559 (1991).  https://doi.org/10.1063/1.460491
  36. 36.
    W. Kohn, L.J. Sham, Phys. Rev. 137, A1697 (1965).  https://doi.org/10.1103/PhysRev.137.A1697
  37. 37.
    E.A. Hylleraas, Z. Phys. 65(3), 209 (1930).  https://doi.org/10.1007/BF01397032
  38. 38.
    N.H. March, R.J. White, J. Phys. B: At. Mol. Phys. 5(3), 466 (1972); Reprinted in Ref. [74].  https://doi.org/10.1088/0022-3700/5/3/011
  39. 39.
    N.H. March, R.G. Parr, Proc. Natl. Acad. Sci. (USA) 77(11), 6285 (1980); Reprinted in Ref. [74]Google Scholar
  40. 40.
    N.H. March, R.G. Parr, J.F. Mucci, Proc. Natl. Acad. Sci. (USA) 78(10), 5942 (1981)ADSCrossRefGoogle Scholar
  41. 41.
    S. Kotochigova, Z.H. Levine, E.L. Shirley, M.D. Stiles, C.W. Clark, Atomic reference data for electronic structure calculations, (National Institute of Standards and Technology, Gaithersburg, MD, 2003), ver. 1.3Google Scholar
  42. 42.
    R. Balawender, L. Komorowski, J. Chem. Phys. 109(13), 5203 (1998).  https://doi.org/10.1063/1.477137
  43. 43.
    R. Balawender, P. Geerlings, J. Chem. Phys. 123(12), 124102 (2005).  https://doi.org/10.1063/1.2012329
  44. 44.
    R. Balawender, P. Geerlings, J. Chem. Phys. 123(12), 124103 (2005).  https://doi.org/10.1063/1.2012330
  45. 45.
    A.J. Cohen, P. Mori-Sánchez, W. Yang, Phys. Rev. B 77, 115123 (2008).  https://doi.org/10.1103/PhysRevB.77.115123
  46. 46.
    P. Politzer, P. Lane, J.S. Murray, in Reviews of quantum modern chemistry. A celebration of the contributions of Robert G. Parr, vol. 1, ed. by K.D. Sen (World Scientific, Singapore, 2012), pp. 63–84Google Scholar
  47. 47.
    A.D. Becke, R.M. Dickson, J. Chem. Phys. 89(5), 2993 (1988).  https://doi.org/10.1063/1.455005
  48. 48.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988).  https://doi.org/10.1103/PhysRevB.37.785
  49. 49.
    R.A. Kendall, T.H. Dunning Jr., R.J. Harrison, J. Chem. Phys. 96(9), 6796 (1992).  https://doi.org/10.1063/1.462569
  50. 50.
    D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 98(2), 1358 (1993).  https://doi.org/10.1063/1.464303
  51. 51.
    D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 100(4), 2975 (1994).  https://doi.org/10.1063/1.466439
  52. 52.
    D. Layzer, Ann. Phys. 8(2), 271 (1959).  https://doi.org/10.1016/0003-4916(59)90023-5
  53. 53.
    P.O. Löwdin, J. Mol. Spectrosc. 3(1), 46 (1959).  https://doi.org/10.1016/0022-2852(59)90006-2
  54. 54.
    Y. Tal, M. Levy, Phys. Rev. A 23, 408 (1981).  https://doi.org/10.1103/PhysRevA.23.408
  55. 55.
    J.L. Gázquez, A. Vela, M. Galván, Phys. Rev. Lett. 56, 2606 (1986).  https://doi.org/10.1103/PhysRevLett.56.2606
  56. 56.
    J.L. Gázquez, A. Vela, Phys. Rev. A 38, 3264 (1988).  https://doi.org/10.1103/PhysRevA.38.3264
  57. 57.
    A. Vela, M. Galván, J.L. Gázquez, Int. J. Quantum Chem. 34(S22), 329 (1988).  https://doi.org/10.1002/qua.560340837
  58. 58.
    B.G. Englert, J. Schwinger, Phys. Rev. A 32, 26 (1985).  https://doi.org/10.1103/PhysRevA.32.26
  59. 59.
    B.G. Englert, J. Schwinger, Phys. Rev. A 32, 36 (1985).  https://doi.org/10.1103/PhysRevA.32.36
  60. 60.
    B.G. Englert, J. Schwinger, Phys. Rev. A 32, 47 (1985).  https://doi.org/10.1103/PhysRevA.32.47
  61. 61.
    C. Van Alsenoy, A. Peeters, J. Mol. Struct. Theochem 286, 19 (1993).  https://doi.org/10.1016/0166-1280(93)87148-7
  62. 62.
    B. Rousseau, C. Van Alsenoy, A. Peeters, F. Bogár, G. Paragi, J. Mol. Struct. Theochem 666, 41 (2003). The role of chemistry in the evolution of molecular medicine. A Tribute to Professor Albert Szent-Gyorgyi to Celebrate his 110th Birthday.  https://doi.org/10.1016/j.theochem.2003.08.011
  63. 63.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comp. Chem. 14(11), 1347 (1993).  https://doi.org/10.1002/jcc.540141112
  64. 64.
    R.G. Parr, W. Yang, J. Am. Chem. Soc. 106(14), 4049 (1984).  https://doi.org/10.1021/ja00326a036
  65. 65.
    W. Yang, R.G. Parr, R. Pucci, J. Chem. Phys. 81(6), 2862 (1984); Reprinted as chap. 22, p. 303, of Ref. [75]. https://doi.org/10.007/978-3-319-53664-4_22,  https://doi.org/10.1063/1.447964
  66. 66.
    E. Echegaray, A. Toro-Labbe, K. Dikmenli, F. Heidar-Zadeh, N. Rabi, S. Rabi, P.W. Ayers, C. Cárdenas, R.G. Parr, J.S.M. Anderson, in Angilella and La Magna [75], chap. 19, pp. 269–288.  https://doi.org/10.1007/978-3-319-53664-4_19, ISBN 9783319536637
  67. 67.
    W.P. Ayers, M. Levy, Theor. Chem. Acc. 103(3), 353 (2000).  https://doi.org/10.1007/s002149900093
  68. 68.
    C. Cárdenas, W. Tiznado, P.W. Ayers, P. Fuentealba, J. Phys. Chem. A 115(11), 2325 (2011).  https://doi.org/10.1021/jp109955q
  69. 69.
    P.K. Chattaraj, A. Cedillo, R.G. Parr, J. Chem. Phys. 103(24), 10621 (1995).  https://doi.org/10.1063/1.469847
  70. 70.
    W. Yang, W.J. Mortier, J. Am. Chem. Soc. 108(19), 5708 (1986).  https://doi.org/10.1021/ja00279a008
  71. 71.
    K.A. Van Genechten, W.J. Mortier, P. Geerlings, J. Chem. Phys. 86(9), 5063 (1987).  https://doi.org/10.1063/1.452649
  72. 72.
    W.J. Mortier, in Electronegativity, ed. by K.D. Sen, C.K. Jørgensen (Springer, Berlin, 1987), pp. 125–143Google Scholar
  73. 73.
    Y. Tal, L.J. Bartolotti, J. Chem. Phys. 76(8), 4056 (1982).  https://doi.org/10.1063/1.443479
  74. 74.
    N.H. March, G.G.N. Angilella (eds.), Many-Body Theory of Molecules, Clusters, and Condensed Phases (World Scientific, Singapore, 2009)MATHGoogle Scholar
  75. 75.
    G.G.N. Angilella, A. La Magna (eds.), Correlations in Condensed Matter Under Extreme Conditions: A Tribute to Renato Pucci on the Occasion of his 70th Birthday (Springer, Berlin, 2017).  https://doi.org/10.1007/978-3-319-53664-4, ISBN 9783319536637

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Robert Balawender
    • 1
  • Andrzej Holas
    • 1
  • Frank De Proft
    • 2
  • Christian Van Alsenoy
    • 3
  • Paul Geerlings
    • 2
  1. 1.Institute of Physical Chemistry of the Polish Academy of SciencesWarsawPoland
  2. 2.General Chemistry (ALGC)Vrije Universiteit Brussel (Free University of Brussels, VUB)BrusselsBelgium
  3. 3.Department of ChemistryUniversity of AntwerpAntwerpBelgium

Personalised recommendations